Polski

Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

952
2024-10-26 11:36:19
Zobacz tłumaczenie

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".

Figure 1. Demonstration of multi-color diffraction. (a) Diffraction setting. (b) Example image. (c) FT of (b). (d) Obtained through zero padding around (b). (e) FT of (d). (f) Obtain (e) through cropping.

The duration of attosecond light pulses is extremely short (1 attosecond=10-18 seconds), which is a direct and effective means to expand the study of ultrafast dynamics of microscopic matter and reveal underlying physical laws in multiple fields. The attosecond light pulse can achieve ultra-high time resolution, while also possessing characteristics such as short wavelength, high coherence, and high-precision synchronous control. However, the inherent ultra wide spectrum of attosecond light pulses introduces significant chromatic aberration in imaging systems, and the interference between different spectral components and the lack of high-quality optical components in the extreme ultraviolet/soft X-ray band have become bottlenecks restricting the development of attosecond imaging. Our goal is to overcome these technological challenges, achieve ultra-high spatiotemporal resolution imaging based on attosecond light sources, and promote the application of attosecond light sources in fields such as biomedicine, laser precision processing, and semiconductors, "said Wang Hushan, head of the attosecond imaging research team at the attosecond Science and Technology Research Center.

The new method for calculating imaging using lensless ultra wide spectrum proposed by the research team of Xi'an Institute of Optics and Fine Mechanics can extract high-quality clear monochromatic diffraction patterns from blurry ultra wide spectrum diffraction patterns, thereby achieving high-resolution imaging. This method significantly improves the applicable spectral bandwidth of a single coherent diffraction imaging light source, with a spectral bandwidth to center wavelength ratio of up to 140%, which is currently a relatively advanced level internationally, "said Li Boyang, a member of the Amis Imaging Research Team at the Amis Science and Technology Research Center. This study provides a key technological path for attosecond imaging, which is of great significance for the construction of advanced attosecond laser facilities (part of Xi'an) imaging terminals and the significant application expansion of attosecond light sources in China's major scientific and technological infrastructure.

Figure 2. (a) (d) Narrow band coherent diffraction imaging; (b) (e) Direct inversion results of broadband optical diffraction patterns; (c) (f) Broadband coherent diffraction imaging achieved by the monochromatization method proposed by the team

The 2023 Nobel Prize in Physics is awarded to three scientists in recognition of their experimental method of generating attosecond light pulses for studying the electronic dynamics of matter. Fu Yuxi, Deputy Director of Xi'an Institute of Optics and Fine Mechanics, introduced, "Since our establishment, we have had a solid theoretical research foundation in the field of ultrafast light science. In recent years, we have deployed fundamental, forward-looking, and systematic research in the field of ultrafast light science. In 2021, we specifically established the Ames Science and Technology Research Center, closely focusing on the forefront of world science and technology and major national needs, striving to build an international first-class innovative research platform and talent team, and providing key support for seizing the high ground in the field of ultrafast light science.

Source: Opticsky

Powiązane rekomendacje
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    Zobacz tłumaczenie
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Zobacz tłumaczenie
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Zobacz tłumaczenie
  • BYD and Huagong Technology deepen strategic cooperation and exchange

    Recently, BYD Semiconductor Division held discussions and exchanges with Huagong Technology High Tech Company and Laser Company, opening a new chapter of strategic cooperation.Chen Gang, General Manager of BYD Semiconductor Division, Nie Bo, Party Committee Member and General Manager of Huagong High Tech, Wang Jiangang, Party Committee Member, Deputy General Manager of Huagong Laser, and General M...

    2024-12-11
    Zobacz tłumaczenie
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Zobacz tłumaczenie