Polski

Using attosecond pulses to reveal new information about the photoelectric effect

822
2024-09-02 15:22:21
Zobacz tłumaczenie

Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between electrons more deeply, promoting the development of technologies such as semiconductors and solar cells. The relevant paper titled 'Attested delays in X-ray molecular ionization' was published in the latest issue of the journal Nature.

The photoelectric effect refers to the phenomenon in which photons interact with molecules or atoms on a metal surface when light is irradiated, causing the metal surface to release electrons. This effect laid the theoretical foundation for quantum mechanics, but the so-called photoelectric emission delay time has always been a fiercely debated topic. The latest progress in the field of attosecond science provides an important tool for further revealing the secret of this time delay.

Research schematic diagram
In the latest study, researchers used attosecond (10 billionth of a second) X-ray pulses emitted by SLAC's linear accelerator coherent light source to ionize core level electrons and "kick" them out of molecules. Then, they used separate laser pulses to "kick" the electrons in slightly different directions based on their emission time to measure the delay time of photoelectric emission.

Research shows that this delay time is as long as 700 attosecond, and the interaction between electrons plays an important role in this delay. Researchers point out that measuring and interpreting these time delays can help better analyze experimental results, especially in fields such as protein crystallography and medical imaging where the interaction between X-rays and matter is crucial. They plan to delve deeper into the electronic dynamics within different molecular systems, further revealing new information on electronic behavior and molecular structure.

Source: Science and Technology Daily, Author: Liu Xia

Powiązane rekomendacje
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    Zobacz tłumaczenie
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Zobacz tłumaczenie
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Zobacz tłumaczenie
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Zobacz tłumaczenie
  • Brother launches a series of color LED laser printers for homes and offices

    Brother is an innovative global company that proudly launches its latest series of color LED laser printers. The new printer series is colorful and seamlessly connected, designed specifically for home and small office environments.The company's latest product aims to improve productivity in home and small business environments, combining excellent printing quality with excellent printing speed. Ea...

    2024-03-20
    Zobacz tłumaczenie