Polski

New type of metasurface with adjustable beam frequency and direction

231
2024-07-30 10:21:02
Zobacz tłumaczenie

Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for processing free space signals rather than fiber optic signals, which can create many sidebands or channels with different optical frequencies.

When many people share the same Wi Fi network, the network may experience latency or lag. But if everyone had a dedicated wireless communication channel, it would be hundreds of times faster and bandwidth increased than the Wi Fi we use today. The new research is not only expected to be used for developing new wireless communication channels, but also opens up new avenues for developing new ranging technologies or transmitting large amounts of data into space.

Researchers have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams, creating many sidebands or channels of different optical frequencies.

The research team stated that the design of metasurfaces aims to surpass the effects that traditional optical components such as cameras or microscope lenses can achieve. This multi-layer crystal tube like device is called a "spatiotemporal metasurface", which adopts carefully selected nanoscale antenna pattern design to change the response of light, and can reflect, scatter or otherwise control light, such as reflecting light in a specific direction and at a specific frequency.

The core width and length of the device are both 120 microns, and the wavelength of the light wave used when operating in reflection mode at the optical frequency is 1530 nanometers, which is thousands of times higher than the frequency of radio waves, meaning that the available bandwidth is much larger.

The research team suggests that these metasurfaces could be used in the field of LiDAR, where light can be used to capture depth information of three-dimensional scenes. The ultimate goal of the team is to develop a 'universal metasurface' that can create multiple optical channels in free space, with each channel transmitting information in a different direction. They envision that in the future, when many people use laptops in the same coffee shop, everyone will no longer receive wireless Wi Fi signals, but instead receive their own high fidelity beam signals, and no longer have to worry about internet speed issues.

Source: Science and Technology Daily

Powiązane rekomendacje
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Zobacz tłumaczenie
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    Zobacz tłumaczenie
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    Zobacz tłumaczenie
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Zobacz tłumaczenie
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Zobacz tłumaczenie