Polski

Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

192
2024-07-10 14:33:18
Zobacz tłumaczenie

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion of Aluminum Phosphate Glasses".

Alkaline aluminum phosphate glass has important applications in the solidification of nuclear waste glass and other fields. Among them, chemical stability is crucial for its application. To gain a deeper understanding of the chemical stability of glass, it is necessary to understand its chemical corrosion mechanism. The study of glass corrosion mechanisms has a long history, but there are still many controversies. Previous research has mainly focused on borosilicate glass, while there has been less research on the corrosion mechanism of phosphate glass.

In this study, researchers conducted atomic scale analysis of the structure of alkali aluminum phosphate glass before and after corrosion using various advanced nuclear magnetic resonance techniques, and found that there were two different dissolution modes of the Q1 and Q0 groups in the glass in aqueous solution. This confirms that the crystal layer on the surface of phosphate glass originates from the dissolution of glass components and subsequent deposition on the glass surface. Revealed the dissolution mechanism of alkaline aluminum phosphate glass in aqueous solution and the formation mechanism of surface crystal layer. The research results deepen our understanding of the chemical stability mechanism of alkaline aluminum phosphate glass.

(a) The two dissolution modes of glass. (b) 27Al {27Al} 2D WURST 2Q-1Q spectrum of corroded glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Powiązane rekomendacje
  • HENGTONG listed on the Fortune Global 500 list of brands

    Recently, the 2024 (21st) World Brand 500 ranking list exclusively compiled by World Brand Lab was released in New York, USA. HENGTONG brand participated in the selection for the first time, standing out from more than 8000 participating brands in 32 countries worldwide and ranking 395th on the "Top 500 World Brands" list. This year, there are a total of 21 new brands on the global list, of whic...

    2024-12-17
    Zobacz tłumaczenie
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Zobacz tłumaczenie
  • New technology from Swedish universities enables real-time laser beam forming and control

    Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.Adaptive beam shaping using deformable mirror technology (Image source: Western Univer...

    2024-12-19
    Zobacz tłumaczenie
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Zobacz tłumaczenie
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Zobacz tłumaczenie