Polski

Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

205
2024-06-04 15:20:04
Zobacz tłumaczenie

Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.

Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicists to explore the fundamental concepts of matter and light. This study, published in the journal Nature Nanotechnology, can also help researchers develop more efficient lasers that are being used in a range of fields such as medicine and manufacturing.

This device is composed of a specific material called photonic topological insulator, which can guide photons (wave shaped particles formed into light) to specially designed interfaces without dispersing them in the material.

Topological insulators can simulate the behavior of multiple photons in a coherent manner, enabling them to act as micro laboratories to study quantum phenomena at very small scales.

Professor RPI and senior author of Natural Nanotechnology, Wei Bao, pointed out that our photonic topological insulator is a significant breakthrough in the field of fundamental physics. Its unique design allows materials to operate at room temperature, which was previously a challenge due to expensive equipment.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.
RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.

RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

The device was manufactured by researchers who grew ultra-thin plates of halide perovskite, a crystal containing cesium, lead, and chlorine, and produced a polymer on it. They sandwiched these crystal plates and polymers between thin sheets of different oxide materials to create an object approximately 2 microns thick and 100 microns wide, which is roughly the same length and width as ordinary human hair.

When researchers applied lasers to devices, they observed a triangular pattern that lit up at the interface designed in the material. This mode is caused by the topology characteristics of the laser determined by the device design.

Shekhar Garde, Dean of the RPI School of Engineering, emphasized the prospects of studying quantum phenomena at room temperature.
The study of atmospheric carbon capture in the Mesozoic volcanic regions of central China is the main topic discussed in Nature Nanotechnology. The title of this paper is "The Cohesive Phenomenon in Topological Valley Halls".
Funding from the National Science Foundation and the Office of Naval Research has played an important role in funding this research.

Source: Laser Net

Powiązane rekomendacje
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    Zobacz tłumaczenie
  • Leya Invents Next Generation Agricultural Blue Laser Weeding Technology

    Laudado&Associates LLC (L&A), an agricultural technology development company headquartered in California, announced the Autonomous Agricultural Solutions Conference held at FIRA Robotics&last week in Salinas, California.This patent pending technology is a completely new design, designed by L&A, aimed at maximizing the commercial feasibility of laser weeding and thinning. It utilize...

    2023-09-27
    Zobacz tłumaczenie
  • RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

    The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX comp...

    2024-09-30
    Zobacz tłumaczenie
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    Zobacz tłumaczenie
  • The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

    It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the...

    2024-05-14
    Zobacz tłumaczenie