Polski

Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

263
2024-06-03 14:48:38
Zobacz tłumaczenie

Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.

The developed 4-amino-TEMPO derivatives have the characteristic of simultaneously improving the performance of fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs).

Traditional materials are difficult to synthesize and produce on a large scale, and the reproducibility of devices using them is poor. The 4-amino-TEMPO derivative developed by the research team not only has a simple synthesis process and can be synthesized in large quantities, but also enhances the performance of FDSSCs and FOLEDs, improving the performance of these two electronic devices by more than 20%.

The research team, including Professor Chul Jin Ahn from Changyuan National University, as well as Dr. Jae Ho Kim and Dr. Myung kuan Song from the Energy and Electronic Materials Department of the Department of Surface and Nanomaterials, designed and synthesized a material with photocatalytic performance to improve the efficiency of FDSSC.

Synthetic materials exhibit high stability in both air and moisture, making them suitable for producing high-performance FDSSC and FOLED. In addition, it has been confirmed that it has excellent washing performance and resistance to mechanical impact.

4-Amino-TEMPO derivatives are applied in various electronic device fields, including solid electrolytes in lithium batteries, catalysts, solar cells, and organic light-emitting diodes. The uniqueness of this technology lies in its ability to produce on a large scale through simple processes, coupled with its cost-effectiveness. In addition, it provides versatility rather than a single function, making it widely applicable to various electronic applications.

These derivatives can be mass-produced at low cost, with less than 1 million Korean won per 100 grams. Utilizing this technology for local and large-scale production may bring unprecedented economic benefits to electronic equipment companies.

Dr. Song Mingkuan, the chief researcher of this study, said, "By utilizing multifunctional materials, we can improve the performance and reliability of electronic devices. We expect to apply them in different fields, including energy production and storage materials, as well as sensor materials."

The research team is continuing further research to use 4-amino-TEMPO derivatives for organic solar cells, perovskite solar cells, and organic light-emitting diodes, with the goal of mass production within a few years.

Source: Laser Net

Powiązane rekomendacje
  • Industrial blue light laser developer Nuburu adds new director

    Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...

    01-10
    Zobacz tłumaczenie
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Zobacz tłumaczenie
  • New technology from Swedish universities enables real-time laser beam forming and control

    Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.Adaptive beam shaping using deformable mirror technology (Image source: Western Univer...

    2024-12-19
    Zobacz tłumaczenie
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    Zobacz tłumaczenie
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    Zobacz tłumaczenie