Polski

Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

638
2024-05-23 14:12:18
Zobacz tłumaczenie

In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.

Scientists from the KTH Royal Institute of Technology in Stockholm have stated that combining quartz glass optical devices with optical fibers can achieve various innovations, including more sensitive remote sensors for the environment and healthcare. The printing technology they reported may also prove valuable in the production of drugs and chemicals.

This work was described in the ACS Nano journal.
Professor Kristin Gylfason from KTH stated that this method overcomes the long-term limitations of using quartz glass to construct fiber tips, which typically require high-temperature treatment, thereby damaging the integrity of temperature sensitive fiber coatings.

Compared to other methods, this process starts from a non carbon substrate. This means that there is no need for high temperatures to remove carbon, in order to make the glass structure transparent. Lead author Lee Lun Lai said that researchers have printed a quartz glass sensor, which has been proven to be more elastic than standard plastic sensors after multiple measurements.

New applications
Meanwhile, researchers from Aston University in Birmingham have received over £ 1 million ($1.27 million) in funding to develop very small optical devices that can also be installed on fiber surfaces. The potential applications are manufacturing, information technology, and agriculture.

The Engineering and Physical Science Research Council (EPSRC) in the UK has provided a grant of £ 1167290 for the PicoSNAP project. This award will be used to develop surface nanoscale axial photonics (SNAP) technology, which can manufacture micro photonic devices.

Traditionally, the accuracy of micro devices is limited by the size of atoms, and manufacturing techniques remain stable at a few nanometers. However, the PicoSNAP technology, pioneered by Professor Misha Sumetsky from the Aston Institute of Photonics Technology (AIPT), allows devices to be further scaled down so that measurements can be made in picometers.

Professor Sumetsky's goal is to develop a reliable manufacturing process to produce equipment that is both ultra precise and easy to replicate. If successful, the project will not only bring a new revolutionary technology, but also provide micro optical devices with previously unattainable performance and prepare for practical applications.

He said, "The lack of reliable and scalable picosecond precision manufacturing processes remains a major obstacle, and SNAP technology has the potential to meet this demand with its excellent accuracy and performance. The goal of this project is to develop the process, which requires a deep understanding of the relevant physical phenomena and the design and manufacture of new micro devices that are crucial for future communication, optical signal processing, microwave, and sensing technologies.".

Source: Laser Net

Powiązane rekomendacje
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    Zobacz tłumaczenie
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Zobacz tłumaczenie
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Zobacz tłumaczenie
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    Zobacz tłumaczenie
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Zobacz tłumaczenie