Polski

NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

354
2024-05-13 14:01:54
Zobacz tłumaczenie

NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian applications. The award of this contract is based on NUBURU's announcement in August 2023 of the successful implementation of the first phase of Small Business Innovation Research ("SBIR").

NUBURU's blue power launch technology is a revolutionary rethinking of the power grid for unique lunar and Martian environments, eliminating the need to transport heavy copper or aluminum wires that are economically and logistics impractical. The blue power transmission technology method can dynamically allocate power to mobile roaming vehicles, temporary or permanent sites, and even remote habitats. NUBURU's blue laser architecture enables low size, low weight, and low power consumption (SWaP) design, clear visibility for navigation, efficient direct diode technology, and advanced direct bandgap solar cell technology for high electrical efficiency. This technological solution is directly aligned with the mission objectives of NASA's Artemis program, which aims to permanently return humans to the moon.

In the initial phase of the project, NUBURU demonstrated the scientific, technological, and commercial feasibility of its technology. In the second phase of the plan, NUBURU's goal is to expand the power, range, and performance of blue laser power emission technology. The plan will demonstrate that the technology can provide hundreds of watts of power within a kilometer level range. In addition, NUBURU will adopt the next generation technology to improve its high brightness laser source, which can extend the technology range to tens of kilometers on the lunar surface.
"The second NASA contract demonstrates the innovation of our blue power launch technology, which has the potential to completely change the power management challenges faced by NASA, other space operators, and many commercial enterprises today," said Brian Knaley, CEO and CFO of the company. "Our upcoming innovation, supported by NUBURU's state-of-the-art blue laser technology, will significantly reduce the size and weight of necessary equipment to meet daily task requirements."

Mr. Kenali continued, "In addition to lunar applications, blue laser power launch also has ground applications, including remote power solutions, disaster relief, and controversial logistics for the Ministry of Defense. NUBURU's unique high brightness technology has more applications in the industrial, medical, and defense markets, which benefit from SBIR program funding as well as large markets such as electric vehicles, consumer electronics, aerospace, healthcare, defense, energy, and industrial applications."

NASA's SBIR program funds research, development, and demonstration of innovative technologies with successful commercialization potential. The SBIR program aims to bring these technologies to market through a three-stage process, ultimately achieving commercialization and deployment. The second phase of work will be an important step towards validating blue laser power emission technology on a scale crucial to commercial success.

Source: Laser Net

Powiązane rekomendacje
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    Zobacz tłumaczenie
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    Zobacz tłumaczenie
  • Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

    Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy.The research team applied the high power fiber ...

    2023-08-25
    Zobacz tłumaczenie
  • Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

    Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.UV laser is generated by passing a standard wavelength laser (1064nm) throug...

    2023-10-09
    Zobacz tłumaczenie
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Zobacz tłumaczenie