Polski

Accurate measurement of neptunium ionization potential using new laser technology

651
2024-05-11 16:42:14
Zobacz tłumaczenie

Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy technique that can more accurately measure the ionization potential of neptunium compared to previous methods.

Neptunium is an actinide metal in the periodic table adjacent to uranium, with an atomic number of 93. The inspiration for its name comes from Neptune, located outside of Uranus in the solar system, which is a recognition of its position. Among the 25 known isotopes, most have extremely short lifetimes. However, the most stable isotope, neptunium 237 (237 Np), has a half-life of over 2 million years, making it a particularly dangerous nuclear pollutant.

The neptunium isotope samples available for this type of analysis are very small: they typically only contain a few atoms of the isotope.


Magdalena Kaja and her colleagues utilized a cutting-edge device that includes solid-state titanium: sapphire laser systems, enhanced laser ion sources, and high transmittance mass separators. This advanced equipment has played an important role in their research on neptunium.

The research team used this technique to measure the first ionization energy of neptunium, which is the energy required to remove the first electron from the outermost electron shell to form a positive ion. They accurately determined the value to be 6.265608 (19) eV. This measurement is not only consistent with the values previously reported in scientific literature, but also achieves an accuracy level more than ten times higher than any previous measurement.

This method can also be applied to the analysis and detection of trace amounts of neptunium in radioactive waste.

Source: Laser Net

Powiązane rekomendacje
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    Zobacz tłumaczenie
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Zobacz tłumaczenie
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Zobacz tłumaczenie
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    Zobacz tłumaczenie
  • Hanbit Laser Layout in Southeast Asia's Mid to Low End Market

    Hanbit Laser, a South Korean laser equipment manufacturer, has recently completed an important step in its strategic layout for the Southeast Asian market. Recently, the company officially opened a laser application center in Hanoi, Vietnam, and entered the local mid to low price equipment market by integrating laser technology and automation solutions. This is a substantial progress in implementi...

    02-26
    Zobacz tłumaczenie