Polski

The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

441
2024-03-23 10:01:04
Zobacz tłumaczenie

Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmission of 2.79 at room temperature for the first time μ M-band high-energy pulse laser. The relevant achievements have been published in the internationally renowned optical top journal Optics and Laser Technology.

Laser medical instruments usually require a flexible catheter to transmit the laser emitted to the patient's treatment site, but traditional mid infrared laser medical instruments mostly use a guide arm to transmit the laser. However, the traditional light guide arm transmission method for laser has many problems, such as complex system structure, low transmission efficiency, and insufficient flexibility. The use of fiber optic transmission can solve the above problems, but the material of solid core fiber has a low laser damage threshold in the mid infrared band, which cannot meet the requirements of 3 μ High energy density optical guidance requirements for m-band erbium laser medical devices. So, the research team designed and researched an AR-HCF alternative light guide arm with a simple structure, high coupling transmission efficiency, large damage threshold, and flexible transmission to transmit laser energy.

The team adopts a design with 78 μ A 6-well microstructure AR-HCF with a larger core diameter of m, efficiently transported for the first time under room temperature conditions at 2.79 μ M-band high-energy pulse laser. Without damaging the optical fiber, the average coupling transmission efficiency of the entire region is 77.3%, and the highest coupling transmission efficiency reaches 85% under high beam quality and small coupling energy. If the air absorption attenuation in the fiber core is deducted, the self transmission efficiency of the fiber optic system with this structure has actually exceeded 90%. The system achieved a maximum pulse laser energy output of 11.78 mJ, with a corresponding energy density threshold of 350J/cm2, far exceeding the required value for soft tissue ablation of living organisms. At the same time, the minimum bending radius of the AR-HCF is 20cm and the corresponding loss can meet the clinical needs of surgeons, and the laser beam quality at the output end of the AR-HCF is better than that at the input end, which has been improved significantly.

Compared to other structures and materials currently used for 2.79 μ Compared to optical fibers with m-wavelength transmission, the 6-hole structure AR-HCF of this silica has stronger mechanical stability, higher damage threshold, lower bending sensitivity, and superior transmission performance compared to traditional light guide arms. This study is 2.79 μ M Cr, Er: YSGG medical solid-state laser has opened up a new way for efficient transmission.

Figure 1. Cross section structure of AR-HCF

Figure 2.2.79 μ M AR-HCF space transmission experimental device

Figure 3. Loss of AR-HCF under different bending radii and bending directions

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Powiązane rekomendacje
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Zobacz tłumaczenie
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    Zobacz tłumaczenie
  • The research team describes laser direct writing of single-photon optical fiber integrated multimode storage on a communication band chip

    Figure: Experimental setup.Quantum memory that relies on quantum band integration is a key component in developing quantum networks that are compatible with fiber optic communication infrastructure. Quantum engineers and information technology experts have yet to create such a high-capacity network that can form integrated multimode photonic quantum memories in communication frequency ban...

    2023-08-04
    Zobacz tłumaczenie
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    Zobacz tłumaczenie
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Zobacz tłumaczenie