Polski

Oxford University Tokamak Energy Company develops laser technology for fusion power plants

395
2024-03-14 15:00:07
Zobacz tłumaczenie

Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.
The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.

Clean, safe, and renewable nuclear fusion power generation occurs inside the tokamak, which is a device that heats plasma to over 100 million degrees Celsius.
A professional laser system will closely and accurately measure the hydrogen fuel contained inside, ensuring that the burning plasma remains stable and maintains density.

Dr. Tadas Pyragius, a plasma physicist at Tokamak Energy, explained, "Measuring plasma density is key to our understanding and control of fusion fuels and future efficient power plant operations.".
The interaction between laser beams emitted by plasma and electrons tells us the density of fuel, which is crucial for sustained fusion conditions and providing safe and reliable energy to the power grid.

"The extreme conditions caused by the nuclear fusion process mean that we now need to improve laser based diagnostic technology to advance our mission of providing clean, safe, and affordable nuclear fusion energy in the 2030's."
The ST40 of Tokamak Energy is the first private nuclear fusion machine to achieve a plasma ion temperature of 100 million degrees Celsius, which is the threshold for commercial nuclear fusion.

Since achieving a breakthrough in 2022, the machine has undergone a series of hardware upgrades, including new power supplies and diagnostic systems.
Last year, the company successfully debugged the Thomson scattering laser diagnostic instrument for ST40 to provide detailed readings of plasma temperature and density at specific locations.
After further upgrades and maintenance, the machine will be put back into use later in 2024.

Source: Laser Net

Powiązane rekomendacje
  • China University of Science and Technology has made progress in in-situ monitoring of thermal runaway in lithium-ion batteries with optical fibers

    Recently, the team of Professor Sun Jinhua and researcher Wang Qingsong of the University of Science and Technology of China and the team of Professor Guo Tuan of Jinan University have made important achievements in the field of early warning of thermal runaway optical fiber detection of lithium-ion batteries.A high-precision, multi-mode integrated fiber optic device that can be implanted in...

    2023-09-04
    Zobacz tłumaczenie
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    Zobacz tłumaczenie
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    Zobacz tłumaczenie
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    Zobacz tłumaczenie
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    Zobacz tłumaczenie