Polski

Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

512
2024-03-08 14:18:39
Zobacz tłumaczenie

Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and strong field physics.

The scientists of the Nathalie Picqu é group at the Max Planck Institute for Quantum Optics have made a significant leap in the field of ultraviolet spectroscopy, successfully achieving high-resolution linear absorption double comb spectroscopy in the ultraviolet spectral range. This breakthrough achievement has opened up new possibilities for conducting experiments under low light conditions and paved the way for new applications in various scientific and technological fields.

Double comb spectroscopy is a powerful technique for precise spectral analysis over a wide spectral bandwidth, mainly used for infrared absorption of small molecules in the gas phase. It relies on measuring transient interference between two frequency combs with slightly different repetition frequencies.

A frequency comb is a spectrum of laser lines that are uniformly distributed and phase coherent, and its function is similar to a ruler, which can measure the frequency of light extremely accurately. The dual comb technology is not limited by the geometry of traditional spectrometers, providing enormous potential for high precision and accuracy.

However, dual comb spectroscopy typically requires a strong laser beam, making it less suitable for scenarios with low light levels that are crucial. The MPQ team has now demonstrated through experiments that dual comb spectroscopy can be effectively used under low light conditions that are more than one million times weaker than commonly used power levels.

This breakthrough was achieved using two different experimental devices and different types of frequency comb generators. The team has developed a photon level interferometer that can accurately record statistical data of photon counting and display the signal-to-noise ratio at the basic limit. This achievement highlights the optimal utilization of available light in experiments and opens up prospects for dual comb spectroscopy in challenging scenarios where low light levels are crucial.

MPQ researchers have solved the challenges associated with generating ultraviolet frequency combs and constructing dual comb interferometers with long coherence times, paving the way for achieving this coveted goal. They cleverly controlled the mutual coherence of two comb lasers, with each comb line having a flying tile, proving the optimal accumulation of interference signal counting statistics over an hour.

"Our innovative low light interferometry method overcomes the challenges of low nonlinear frequency conversion efficiency and lays a solid foundation for extending the dual comb spectrum to shorter wavelengths," commented Xu Bingxin, a postdoctoral scientist who led the experiment.

In fact, an exciting future application is to develop short wavelength dual comb spectra to achieve precise vacuum and extreme ultraviolet molecular spectra over a wide spectral range. At present, broadband extreme ultraviolet spectroscopy is limited in resolution and accuracy, and relies on unique instruments in professional facilities.

"Although UV dual comb spectroscopy is a challenging goal, it has now become a realistic goal due to our research. Importantly, our research results extend the full functionality of dual comb spectroscopy to low light conditions, opening up new applications in precision spectroscopy, biomedical sensing, and environmental atmospheric detection," concluded Nathalie Picqu é.
The research results are published in the journal Nature.

Source: Laser Net

Powiązane rekomendacje
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    Zobacz tłumaczenie
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Zobacz tłumaczenie
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    Zobacz tłumaczenie
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    Zobacz tłumaczenie
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Zobacz tłumaczenie