Polski

TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

218
2024-03-01 11:43:22
Zobacz tłumaczenie

In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be able to use these systems to monitor the charging and discharging of batteries in real-time, or to accurately determine impurities in the batteries.

The research results will be incorporated into the development of new batteries. According to the analysis, manufacturers will be able to improve charging speed, etc. So far, the company can only conduct such research on large particle accelerators over 100 meters long. The research stations of these large research institutions are rare. The laser driven X-ray source is only the size of a moving house, so the manufacturing cost is lower. Therefore, they are very suitable for use in industry.

The high-tech company Tongkuai is contributing its expertise in industrial laser manufacturing to this partnership. BASF and Cellforce are providing battery materials and components for testing. Ushio Germany and Excessum are contributing their expertise in the field of beam sources. Brooke and Viscom are responsible for building the system. In terms of academia, the University of Hanover and the Fraunhofer Institute in Aachen and Jena are driving forces. The research budget is approximately 15 million euros, and the Federal Ministry of Education and Research is providing funding for the project.

The XProLas development project also aims to create a compact, high brightness X-ray source for analyzing the positive electrode materials of electric vehicle batteries. The materials used to manufacture the cathode of electric vehicle batteries are crucial for the performance and reliability of electric vehicle batteries. The exact composition of cathode materials can only be determined using X-rays. Compact laser drive models can also replace large research facilities in this application field. Therefore, positive electrode material manufacturers can accelerate their development work.

Laser acts as an upstream beam source when producing X-rays. The so-called targets in laser pulse shock are metals such as gallium, indium, or tin. Generating plasma; This type of plasma emits some energy in the form of extremely short wave light, such as X-rays.

Source: Laser Net

Powiązane rekomendacje
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    Zobacz tłumaczenie
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    Zobacz tłumaczenie
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    Zobacz tłumaczenie
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    Zobacz tłumaczenie
  • Nokia and AT&T reach five-year agreement to accelerate fiber optic network upgrade

    Recently, Nokia announced a five-year agreement with AT&T. This agreement aims to fully support and accelerate AT&T's fiber network expansion and upgrade plans by deploying Nokia's Lightspan MF platform and Altiplano access controllers. This cooperation not only marks a deep optimization of the existing fiber optic network, but also heralds the early layout and application of the next ge...

    2024-09-12
    Zobacz tłumaczenie