Polski

Thales will provide laser payloads for Hellas Sat 5

348
2024-01-30 14:01:50
Zobacz tłumaczenie

Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.

The partnership between Hellas Sat and Thales Alenia Space aims to provide cutting-edge communication services with very high data rates from geostationary orbit. This innovative payload aims to connect with the optical ground station of the Greek National Observatory in Athens, the French optical ground station, the European Space Agency's optical ground station, and the LEO Hydron telecommunications satellite of Thales Alenia Space Company.

After the Vertigo H2020 program, Thales Alenia Space Company is currently promoting the development of very high data rate capabilities with the support of France's Balance, CNES, and ESA to cope with long-distance and atmospheric turbulence from the ground to geostationary orbit.

The signing ceremony of the Memorandum of Understanding was held at the Hellas Sat headquarters in Athens, Greece. Representatives from the Prime Minister's Office, the French Embassy in Greece, ESA, the French National Space Research Center, Thales Alenia Space Company, Italy and Switzerland, the Athens National Observatory, and various Greek ministries and local authorities attended the ceremony. Hellas Sat CEO Christodoulos Protopapas said, "We are honored to once again collaborate with Thales Alenia Aerospace Company in the field of optical communication technology, introducing optical connectivity communication services to the European and international markets, effectively implementing new technologies, and ushering in a new era.".

Free space optical laser communication is becoming a space standard, providing greater capacity compared to current satellite communication systems. This technology is expected to completely change space communication infrastructure, similar to the impact of fiber optics on the ground.

Various use cases include universal Internet access, direct data transmission from observation satellites at any time, dedicated links with data centers, and ground fiber redundancy in case of crisis. Introducing optical fibers into space is expected to reduce the demand for a large number of in orbit satellites, contribute to the sustainability of space infrastructure, and minimize sky pollution.

Source: Laser Net

Powiązane rekomendacje
  • Cannon-Brookes spotlights Singapore with SunCable solar

    Billionaire Mike Cannon-Brookes' plan to export clean energy from Australia to Singapore via a 4,200km undersea cable has gained new momentum after taking control of the stalled project.Cannon-Brookes' Grok Ventures has completed its acquisition of SunCable from the government and is advancing talks with authorities in Singapore and Indonesia, the investment firm said on Thursday. The revised plan...

    2023-09-08
    Zobacz tłumaczenie
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    Zobacz tłumaczenie
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Zobacz tłumaczenie
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Zobacz tłumaczenie
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Zobacz tłumaczenie