Polski

Developing nanocavities for enhancing nanoscale lasers and LEDs

494
2024-01-29 13:42:27
Zobacz tłumaczenie

As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.

In the journal Optical Materials Letters, researchers have demonstrated that the modal volume of their new nanocavity is one order of magnitude lower than previously shown in III-V group materials. III-V group semiconductors have unique characteristics that make them suitable for optoelectronic devices.

The significant spatial limitation of light demonstrated in this work improves the interaction between light and matter, allowing for greater LED power, lower laser threshold, and higher single photon efficiency.

The study was conducted by scientists from the Nanophotonics Center at the Technical University of Denmark. Their goal is to study a new type of dielectric optical cavity that allows for deep subwavelength optical confinement by using the concept they call extreme dielectric confinement.

EDC cavities may generate extremely efficient computers, where deep subwavelength lasers and photodetectors are integrated into transistors to reduce energy consumption by improving the interaction between light and matter.

In current research, the EDC cavity in III-V semiconductor indium phosphide was initially constructed by researchers using an orderly mathematical technique that relaxed geometric constraints and optimized the topology. Then, they used dry etching and electron beam lithography to construct the structure.

"The characteristic size of EDC nanocavities is as small as a few nanometers, which is crucial for achieving extreme light concentrations, but they also have significant sensitivity to manufacturing changes. We attribute the successful implementation of cavities to the improved accuracy of the InP manufacturing platform, which is based on electron beam lithography followed by dry etching," Xiong added.

The second stage of topology optimization is based on the relatively small dielectric feature size achieved by researchers through improved manufacturing methods. After the last optimization cycle, the mode volume of the nanocavity is only 0.26 ³, Among them λ  Is the wavelength of light, and n is its refractive index.

This achievement is four times smaller than the diffraction limit volume of the commonly referred to nanocavity, which is equivalent to a lightbox with a side length of half the wavelength.

Researchers have pointed out that although silicon has recently produced cavities with similar characteristics, III-V group semiconductors have direct band to band transitions, while silicon does not. These transformations are necessary for utilizing Purcell enhancement provided by nanocavities.

Xiong concluded, "Prior to our work, it was uncertain whether III-V group semiconductors would achieve similar results as they did not benefit from advanced manufacturing technologies developed for the silicon electronics industry.".

Currently, researchers are attempting to further reduce pattern volume by improving manufacturing accuracy. In order to manufacture useful nanolasers or nanoLEDs, they also hope to use EDC cavities.

Source: Laser Net

Powiązane rekomendacje
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Zobacz tłumaczenie
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Zobacz tłumaczenie
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    Zobacz tłumaczenie
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    Zobacz tłumaczenie
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Zobacz tłumaczenie