Polski

Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

476
2024-01-25 10:45:47
Zobacz tłumaczenie

TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.

Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherlands and Europe in advancing technological sovereignty within a strong NATO, as it will achieve faster and safer broadband connectivity. This is a temporary result of the emerging Dutch industry's collaborative efforts dedicated to optical satellite communication.".

Almost all connections in daily life, such as Wi Fi, Bluetooth, or 5G, are based on radio frequency waves. Due to the increase in data consumption, this radio spectrum is slowly filling up, causing scarcity and interference. Laser satellite communication provides a solution as it can send data faster and safer through invisible laser signals. The radio frequency can reach speeds of several hundred megabits, and in some cases can reach several thousand megabits per second.

The speed of laser communication has increased by 100 to 1000 times. Even at lower speeds, laser communication links are interesting because the system is smaller, lighter, and more energy-efficient, which is crucial for space applications. It is also safer because it uses a very narrow optical laser beam instead of a wide radio signal. This makes eavesdropping more difficult and interference can be quickly detected.

The laser communication system SmallCAT was launched by SpaceX on a satellite operated by the Norwegian Space Agency in April 2023. Since then, TNO has been preparing to establish a connection between satellites flying in low Earth orbit and optical ground stations in The Hague and Tenerife Island. In such an experiment, the ground station first sends a signal to the satellite, and the laser communication system on the satellite must find the signal through its overpass. Then, it sends the laser back to the Earth that the ground station needs to capture. This is very challenging as the satellite flies at a speed of 28000 kilometers per hour at an altitude of 500 kilometers.

In several experiments, TNO successfully found two ground stations from space and sent back and recaptured the laser beam with extremely high accuracy. Once the link is established, data is transmitted from satellite instruments and received by the optical ground station in The Hague at a maximum data rate of 1 gigabit per second. The ground station of TNO in The Hague was jointly developed by TNO and Airbus Netherlands. This is the first time such a compact satellite instrument made in the Netherlands has achieved this. It indicates that the terminals on the satellite and the ground station are working, and they can also be found under real conditions.

Source: Laser Net

Powiązane rekomendacje
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    Zobacz tłumaczenie
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    Zobacz tłumaczenie
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    Zobacz tłumaczenie
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    Zobacz tłumaczenie
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    Zobacz tłumaczenie