Polski

Scientists have made breakthrough progress in using laser to cool sound waves

509
2024-01-22 15:17:11
Zobacz tłumaczenie

A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.

By using laser cooling, scientists can significantly reduce the temperature of sound waves in optical fibers. They achieved a significant reduction of 219K, ten times higher than previously reported. In the end, they managed to reduce the initial number of phonons by 75% at a temperature of 74 K.

The key to this success lies in utilizing stimulated Brillouin scattering, a nonlinear optical effect that can effectively couple light waves to sound waves. Laser is used to cool acoustic vibrations, creating an environment with minimal thermal noise. This decrease in temperature has a significant impact on quantum systems, as thermal noise can hinder the functionality of quantum communication systems.

A significant advantage of using glass fibers is that they can conduct light and sound over long distances while maintaining strong interactions. During the experiment, researchers used a 50 centimeter long optical fiber to cool the sound wave that extended its entire length. Considering that most of the platforms previously brought to the quantum ground state were microscopic in size, this is remarkable.

The realization of cooling sound waves to such low temperatures has opened up new experimental fields, allowing for a deeper understanding of the fundamental properties of matter. In addition, due to the broadband and continuous existence of sound waves in waveguide systems, these advancements are of great significance for high-speed communication systems.

"We are very enthusiastic about the new insights that pushing these fibers into quantum ground states will bring," said Dr. Birgit Stiller, head of the Quantum Photoacoustics group. Not only from the perspective of basic research, it enables us to glimpse the quantum properties of extended objects, but also because it may have applications in quantum communication schemes and future quantum technologies.

In summary, the breakthrough made by researchers at the Max Planck Institute in utilizing laser cooling of sound waves has brought us closer to achieving the quantum ground state of sound. This development is of great significance to quantum communication systems and opens up new possibilities for future quantum technology.

Source: Laser Net

Powiązane rekomendacje
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    Zobacz tłumaczenie
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    Zobacz tłumaczenie
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Zobacz tłumaczenie
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    Zobacz tłumaczenie
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    Zobacz tłumaczenie