Polski

A new method for generating controllable optical pulse pairs using a single fiber laser

239
2024-01-15 14:10:02
Zobacz tłumaczenie

Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.

Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechanically adjustable distances. Alternatively, a laser source with slightly different orbital periods ("double comb") can be used to generate rapid travel delay from the superposition of two pulse combs.

Professor Georg Herink, the head of the ultrafast dynamics research team for Experimental Physics VIII at Bayreuth University, and his doctoral students Julia A. Lang, along with Professor Alfred Leinstorfer and Dr. Sarah R. Hutter from the University of Constance, have collaborated to demonstrate a pure optical method based on two pulse combs in a single laser. It can achieve extremely fast and flexible adjustable pulse sequences. Meanwhile, this can be achieved in very compact, glass fiber based light sources. By temporarily merging the two pulse combs outside the laser, researchers have obtained a pulse mode that can be set with any delay as needed.

Schematic diagram of dual comb fiber laser oscillator, external pulse combination, and real-time detection.

The researchers used a technique: instead of the usual single light pulse, two pulses are cycled in the laser. The first author of the study, Lang, explained, "There is enough time between two pulses to apply a single" interference "using the fast optical switch inside the laser. Using the knowledge of laser physics, this" intracavity modulation "can cause changes in pulse velocity, causing the two pulses to offset each other in time." The laser source based on glass fiber is manufactured by Hutter and Leitenstorfer from the University of Konstanz.

Thanks to special real-time measurement methods, researchers at Bayreuth University can now accurately observe how short light pulses (called solitons) move when subjected to external influences. This real-time spectral interferometry technology can accurately measure the distance between each pair of pulses - over 10 million times per second. Herink explained, "We have demonstrated that we can adjust time extremely quickly on a large scale and achieve freely programmable forms of motion.". They proposed an innovative method for controlling solitons, which not only provides new insights into soliton physics, but also opens up possibilities for the particularly fast and efficient application of ultra short laser pulses. The research findings have been published in the journal Science Advances.

Source: Laser Manufacturing Network

Powiązane rekomendacje
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Zobacz tłumaczenie
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    Zobacz tłumaczenie
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    Zobacz tłumaczenie
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    Zobacz tłumaczenie
  • Internationalization Strategy Enters Stage 2.0 | HSG Hsglaser Thailand Manufacturing Base Holds Grand Opening

    At 9:00 am local time on June 26th, the opening ceremony of Hsglaser Thailand Manufacturing Base was grandly held in Bangkok Industrial Park, Thailand. This not only marks a significant expansion of Hsglaser's global strategic map, but also signifies that its international layout has officially entered a new 2.0 stage, and is another important milestone for Hsglaser to showcase its outstanding str...

    2024-06-27
    Zobacz tłumaczenie