Polski

Progress in the study of ultrafast electron dynamics using short light pulses

465
2024-01-08 14:53:56
Zobacz tłumaczenie

When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and previously unattainable temporal resolution.

The relevant paper is titled "Time Resolved Photoemission Electron Microscope on a ZnO Surface Using an Extreme Ultraviolet Attention Pulse Pair" and published in Advanced Physics Research.

Through these experiments, the research team has demonstrated the applicability of this method, which can be used to better understand the electronic behavior of electrons in nanomaterials and new solar cells. Researchers from Lund University in Sweden, including Professor Anne L'Huillier, one of the three Nobel laureates in physics last year, also participated in this study.

Here, this work demonstrates the use of spatial and energy resolved photoelectrons to perform attosecond interferometric measurements on zinc oxide (ZnO) surfaces. The combination of optical emission electron microscopy and near-infrared pump extreme ultraviolet probe laser spectroscopy resolved the instantaneous phase of the infrared field with high spatial resolution. The research results indicate that zinc oxide nuclear energy with low binding energy is very suitable for spatially resolved attosecond interferometry measurement experiments. A significant phase shift of the attosecond beat frequency signal was observed across the entire laser focus, attributed to the wavefront difference between the surface pump field and the probe field.

Figure 1: Characterization of the experimental setup.

In the experiment, the research team combined a special electron microscope, a light emission electron microscope (PEEM), with attosecond physics techniques. Scientists use extremely short duration light pulses to excite electrons and record their subsequent behavior. This process is very similar to the process of capturing rapid motion with a flash in photography.

As reported by the research group, similar experiments have yet to achieve the time accuracy required to track electronic motion. The motion speed of these tiny elementary particles is much faster than that of larger and heavier atomic nuclei. However, in this study, scientists combined the highly demanding techniques of light emission electron microscopy and attosecond microscopy without affecting spatial or temporal resolution.

Figure 2: Spectral results of zinc oxide surface.
Vogelsang said, "Now we can finally use attosecond pulses to study in detail the interaction between light and matter at the atomic level and in nanostructures.".

One factor contributing to this progress is the use of a light source that can generate a large number of attosecond pulse flashes per second - in this case, this light source can generate 200000 light pulses per second. Each flash releases an average of one electron from the surface of the crystal, allowing researchers to study their behavior without affecting each other. The more pulses generated per second, the easier it is to extract small measurement signals from the dataset.

Figure 3: Spatial resolved attosecond interferometry measurement of zinc oxide surface.

The experiment of this study was conducted in Anne L'Huillier's laboratory at Lund University in Sweden, which is one of the few research laboratories in the world with the necessary technical equipment for such experiments.

A similar experimental laboratory is currently being established at the University of Oldenburg. In the future, the two teams plan to continue conducting research to explore the behavior of electrons in various materials and nanostructures.

This work provides a clear approach for high spatial resolution attosecond interferometry measurements in the field of atomic scale surfaces, and opens the way for a detailed understanding of the interaction between nanoscale light and matter.

Source: Sohu

Powiązane rekomendacje
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    Zobacz tłumaczenie
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Zobacz tłumaczenie
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    Zobacz tłumaczenie
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    Zobacz tłumaczenie
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    Zobacz tłumaczenie