Polski

Scientists simulate the conditions that allow photons to collide with photons by using lasers

668
2023-08-11 15:15:06
Zobacz tłumaczenie

As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.

In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons just by using lasers.

The ease of setup and comfort of implementation at the currently available laser intensities make it a promising candidate for experimental implementation in the near term.

Photon to photon collisions are theorized to be the fundamental method of creating matter in the universe, derived from Einstein's famous equation E=mc 2. In fact, scientists have created matter indirectly through light: through the high-speed acceleration of metal ions such as gold to bind to each other.

At such high speeds, each ion is surrounded by photons, and as they skim past each other, matter and antimatter are created. However, due to the need for extremely high power lasers, it is difficult to experimentally produce substances in modern laboratories using only lasers.

Simulating how such a feat would be achieved in the lab would be an experimental breakthrough, and one that scientists are hoping to achieve.

Sugimoto added, "The collider contains dense gamma rays that are ten times denser than electrons in a plasma and a million times more energetic than photons in a laser."

The photon-photon collision in the collider produces an electron-positron pair, which is accelerated by the plasma electric field generated by the laser. This produces a positron beam.

Dr Vyacheslav Lukin, program director at the National Science Foundation, which supported the work, said: "This research demonstrates a potential way to explore the mysteries of the universe in a laboratory setting. The future possibilities for high-power laser facilities today and tomorrow become even more interesting."

The application of this work to Star Trek's fictional matter-energy conversion technology is still only fictional. However, the work could help to experimentally validate theories of the universe's composition, and may even help to figure out early unknown physics.

Source: Laser Network



Powiązane rekomendacje
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Zobacz tłumaczenie
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Zobacz tłumaczenie
  • Topcon Announces the Launch of LN-50 3D Laser

    Earlier this month, before the annual Intergeo conference held in Germany, Topcon Positioning Systems announced the latest member of its robot total station series. This California based company launched the LN-50 3D laser in early October, marking their latest layout navigator, which has a range of 50 meters.They pointed out that this latest scanner is specifically designed for homebuilders, mech...

    2023-10-25
    Zobacz tłumaczenie
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    Zobacz tłumaczenie
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Zobacz tłumaczenie