Polski

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

834
2023-09-27 14:13:41
Zobacz tłumaczenie

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.

The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.

The importance of micro comb technology
The optical micro comb technology has significant scientific and technological application potential. It can be used for high-precision frequency measurement and is considered one of the most disruptive technologies since the birth of lasers. In short, a micro comb is like a ruler made of light, which can accurately measure the frequency of light.

Its working principle is based on the laser sending photons, which circulate in the micro resonator, causing light to be divided into multiple precise frequencies. These frequencies can be accurately positioned against each other, just like scales on a ruler. Therefore, a micro comb can create a light source containing hundreds or even thousands of frequencies, similar to a laser beam emitted uniformly.

Due to the fact that almost all optical measurements are related to the frequency of light, micro comb technology has a wide range of applications, from instruments used to calibrate and measure light year distance signals in space science to tracking health status through air analysis in healthcare.

Key breakthroughs in solving efficiency issues
However, the previous micro comb technology had a fundamental problem, which was its low efficiency. The energy conversion efficiency between light and micro combs is not high, resulting in only a small portion of power available in the laser beam.

Researchers have made breakthrough progress on this issue. By using two micro resonators, they successfully increased the power of the micro comb laser beam, increasing the efficiency from about 1% to over 50%. This method utilizes the interaction between two micro resonators, where one resonator couples light from the laser with the other resonator, similar to impedance matching in electronic circuits.

Prospects and Applications
The method described in this study has opened up a new field for the application of high-performance lasers and has been patented. Researchers have also established a start-up company, Iloomina AB, to push this technology to a wider market.

The new micro combs have enormous transformative potential as they enable high-performance laser technology to be used in more markets. For example, frequency combs can be used for autonomous LiDAR modules, GPS satellites, and environmental sensing drones, as well as supporting bandwidth intensive artificial intelligence applications in data centers. This breakthrough will accelerate the adoption of high-performance laser technology in various fields, including healthcare and space science.

Source: China Optical Journal Network

Powiązane rekomendacje
  • The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

    According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”...

    10-28
    Zobacz tłumaczenie
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    Zobacz tłumaczenie
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Zobacz tłumaczenie
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Zobacz tłumaczenie
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Zobacz tłumaczenie