Polski

A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

549
2023-09-21 15:52:59
Zobacz tłumaczenie

According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.

Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sources in large quantities through wet chemical solution processing technology.

The electroluminescence of colloidal quantum dots in the visible light range has been highly efficient and cost-effective, but other wavelengths have been proven to be more challenging so far, especially in the mid infrared region.


The Philippe Guyot SiOnnest Laboratory (PGS Laboratory) at the University of Chicago specializes in the study of nanocrystalline quantum dots generated by colloidal synthesis chemistry. A colloidal quantum dot with significantly improved emission characteristics in the mid infrared band has been developed and its research results have been published in the journal Nature Photonics.

Mid infrared light source
Xingyu Shen from PGS Laboratory commented, "This cost-effective and easy-to-use method of manufacturing infrared light sources using quantum dots may be very useful. This discovery may ultimately lead to significantly cheaper mid infrared LEDs and lasers, or new technological applications.

The above work is based on the previous research on the manufacturing and performance of quantum dot devices in PGS laboratory, including efforts to improve the size distribution of nanoparticles and the development of nanocrystalline quantum dot infrared detectors, which may be comparable to commercial devices at extremely low costs.

In 2022, the research team demonstrated the first mid infrared colloidal quantum dot LED based on mercury telluride (HgTe), which has semiconductor properties and stability, facilitating infrared emission. The team pointed out at the time that this quantum dot "has the potential to break the extremely high 'cost/gram' of infrared imaging through exciting new manufacturing processes.

In the new project, the team further studied the manufacturing technology and luminescence methods of colloidal quantum dots, inspired by the established laser emission cascade method, where electrons pass through a series of different energy levels and emit a portion of energy in the form of light at each level.

According to the PGS laboratory, so far this cascade technology has never been achieved using colloidal quantum dots. The laboratory has created a black "ink" of HgTe nanocrystals, which are "coated" on a substrate and illuminated by an electric current.

According to a paper published by the team in the journal Nature Photonics, the colloidal quantum dot emits a quantum efficiency of 4.5% μ The mid infrared light of m is close to commercial epitaxial cascaded quantum well light-emitting diodes. Through further optimization, this cascading method may surpass existing methods.

We are very excited about this possibility, "Guyot SiOnnest said." This is one of the best examples of potential applications of colloidal quantum dots. More applications can be achieved through other materials, but this system architecture really works because of quantum mechanics. I think it is driving the field forward in a very interesting way.

Source: Sohu

Powiązane rekomendacje
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Zobacz tłumaczenie
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    Zobacz tłumaczenie
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Zobacz tłumaczenie
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Zobacz tłumaczenie
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    Zobacz tłumaczenie