Polski

Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

350
2023-09-18 14:53:09
Zobacz tłumaczenie

Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.

As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improvement performance. After intensive testing and validation by multiple top customers, LIF technology will accelerate the introduction into mass production and assist customers in upgrading their TOPCon battery production line.

In recent years, the global efficient solar cell production capacity has been continuously released, and new technologies that can improve efficiency and reduce costs for various types of solar cell processing have attracted attention. As a leading photovoltaic equipment enterprise, Deere Laser has successfully developed multiple new laser applications such as PERC+, TOPCon+, XBC+, and HJT+, effectively assisting in the continuous upgrading of high-efficiency solar cell technology.

Laser Induced Firing (LIF) technology is a new iterative innovation process developed by Emperor Laser, following the independent research and development of Laser Induced Regeneration (LIR) and Laser Induced Annealing (LIA), A new processing technology that uses laser technology to induce sintering of solar cells.

LIF technology achieves rapid sintering and molding of materials by precisely controlling the laser beam, stacking powder or filamentous materials layer by layer and simultaneously irradiating them with laser. This technology has been widely applied in many fields due to its high efficiency, precision, and flexibility.

In the field of photovoltaics, laser induced sintering technology has the following advantages:
(1) Improving battery efficiency: By achieving precise connection of battery cells, energy consumption and heat loss are reduced, thereby improving the overall efficiency of photovoltaic modules.
(2) Improving product reliability: The precise control of laser induced sintering technology can effectively avoid welding defects and improve the reliability and service life of photovoltaic modules.
(3) Reducing production costs: The rapid prototyping characteristics of laser induced sintering technology can significantly shorten production cycles, reduce production costs, and improve production efficiency.

This technology was developed by Deere Laser in collaboration with industry clients and completed process validation on TOPCon batteries. The results show that this technology can effectively improve the photoelectric conversion efficiency of battery cells, with a gain of over 0.2%.


In TOPCon, IBC, and HJT processes, Tyr Laser has a brand new laser technology coverage. In terms of TOPCon battery technology, as of the disclosure date of the 2023 semi annual report, a total of over 450GW of new boron doped orders have been signed this year. Based on the accelerated breakthrough of the company's LIF technology, the company's TOPCon orders are expected to accelerate growth.

In terms of BC battery technology, the company's laser technology continues to receive orders this year, including orders for N-type and P-type processes. Some orders can refer to the daily operation major contract announcement in early June this year.
In terms of HJT battery technology, the company's LIA laser repair technology continues to receive mass production orders from European customers this year.
In terms of components, the company is developing a new laser welding process that can simplify production processes, reduce damage to battery cells, and improve welding quality. Currently, it has delivered a pilot line to customers.

In addition to the photovoltaic field, in the display panel industry, the company has carried out research and development and prototype trial production of laser repair, laser peeling, and other processes. In the semiconductor wafer manufacturing and packaging field, Deere Laser has carried out research and development of IGBT/SiC laser annealing, wafer laser cleaning/thinning, wafer excitation steganography, and other related technologies; In the field of consumer electronics, the company has carried out research and development of TGV laser microporous technology and completed small batch order delivery.

Source: OFweek

Powiązane rekomendacje
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    Zobacz tłumaczenie
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Zobacz tłumaczenie
  • Dalian Institute of Chemical Physics has made progress in the interdisciplinary field of photochemistry and photophysics

    Recently, the team led by Wu Kaifeng, a researcher at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Zhu Jingyi, an associate researcher, has made progress in the interdisciplinary field of photochemistry and photophysics. The team directly observed the quantum coherence properties of hybrid free radical pairs composed of quantum dots and organic molecules, achieving ef...

    01-09
    Zobacz tłumaczenie
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Zobacz tłumaczenie
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Zobacz tłumaczenie