Polski

Artificial intelligence data centers trigger a wave of laser shortage

9
2025-12-10 14:02:25
Zobacz tłumaczenie

The latest research released by TrendForce indicates that in the context of the evolution of artificial intelligence data centers towards large-scale clusters, high-speed optical interconnect technology has become the core key to improving system performance and scalability. The report predicts that the global shipment of 800G and higher rate optical transceivers will reach 24 million units by 2025, and is expected to achieve approximately 2.6-fold growth by 2026, climbing to nearly 63 million units.

TrendForce reports that the surge in demand has caused a significant upstream bottleneck in laser light sources. Nvidia, motivated by strategic reasons, has secured capacity at key electro-absorption modulated laser (EML) suppliers, leading to extended lead times beyond 2027 and a worldwide shortage. Optical module manufacturers and CSPs are now actively searching for secondary suppliers and alternative designs, changing the competitive landscape within the laser industry.

Nvidia’s strategic monopoly on EMLs

Beyond VCSELs used in short-reach links, mid- to long-reach optical modules mainly depend on two laser types: EML and continuous wave (CW).
EMLs combine modulation functions on a single chip, which makes them highly complex and very challenging to produce. Only a few suppliers are available, such as Lumentum, Coherent (Finisar), Mitsubishi, Sumitomo, and Broadcom.

EMLs, known for their excellent reach and signal integrity, have become a critical bottleneck as hyperscale data centers extend their transmission distances. Nvidia’s silicon photonics and CPO development plans have advanced more slowly than anticipated, leading to ongoing dependence on pluggable modules for GPU cluster expansions. To ensure supply, NVIDIA pre-allocated a large portion of EML capacity, reducing availability for other regions.

CW lasers: The new favorite of CSPs—and the next capacity race

CW lasers offer a steady optical signal and are paired with silicon photonics chips produced at semiconductor foundries used as external modulators. Their simpler design stems from the absence of integrated modulation, which broadens supplier options. Consequently, CW lasers combined with silicon photonics has become the main alternative route for CSPs facing EML shortages.

However, CW production faces increasing constraints due to several factors: long equipment lead times restrict expansion, and strict reliability standards necessitate labor-intensive die-cutting and aging tests. Consequently, many vendors outsource these steps, which adds to downstream bottlenecks. This situation is causing the CW ecosystem to approach a capacity crunch, leading suppliers to hasten their expansion efforts.

High-speed PD demand surges; Taiwanese epitaxy vendors benefit

In addition to laser transmitters, optical modules need high-speed photodiodes (PDs) to receive signals. Leading vendors like Coherent, MACOM, Broadcom, and Lumentum are releasing 200G PDs to enable 200G-per-channel data transmission.

PDs are manufactured on indium phosphide (InP) epitaxial wafers, similar to EMLs and CW lasers. As laser manufacturers focus on expanding epitaxy capacity for laser production, many are outsourcing InP epitaxy to specialized foundries like IntelliEPI (iET) and VPEC, which presents a notable spillover opportunity for Taiwan’s epitaxy sector.

TrendForce forecasts that AI-driven demand is tightening not only memory supply but also the entire upstream laser ecosystem. Nvidia’s aggressive EML lock-in ensures its own supply security, but has inadvertently accelerated the shift toward CW-based and silicon-photonic solutions among non-NVIDIA players. Concurrently, the industry-wide race for capacity is restructuring supply-chain roles and fueling growth across compound-semiconductor epitaxy and processing vendors.

 



Source: TrendForce

Powiązane rekomendacje
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    Zobacz tłumaczenie
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    Zobacz tłumaczenie
  • Application of laser technology in electric vehicles to improve safety and reduce rusting

    Trumpf has developed a laser application to improve the safety of electric vehicles, which can be used for adhesive and coating preparation in battery production, as well as anti-corrosion of aluminum components. This not only enhances safety but also prevents rusting of the vehicle.“Selective surface processing with lasers is a clean and fast alternative to chemical processes in the automotive in...

    10-13
    Zobacz tłumaczenie
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    Zobacz tłumaczenie
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    Zobacz tłumaczenie