Polski

Chinese researchers enhance perovskite lasers by suppressing energy loss

1052
2025-08-25 10:23:09
Zobacz tłumaczenie

Limiting Auger recombination enables “record” quasi-continuous wave laser output.

For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.
Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that makes them difficult and costly to combine with mainstream silicon technology.

All-inorganic perovskite films have emerged as a promising alternative because they can be produced inexpensively, work with many substrate types, and offer strong optical properties. But one major obstacle has stood in the way: at room temperature, it has been difficult to get perovskite lasers to run in continuous or near-continuous modes without quickly losing their charge carriers to an effect known as Auger recombination.

 


Suppressing Auger recombination for high-performance perovskite VCSELs


A research team at Zhejiang University, Hangzhou, China, has demonstrated a simple method to overcome this problem, leading to record-setting performance for perovskite lasers under near-continuous operation.

As reported in Advanced Photonics, their approach uses a volatile ammonium additive during the annealing process of polycrystalline perovskite films. This additive triggers a “phase reconstruction” that removes unwanted low-dimensional phases, reducing channels that accelerate Auger recombination. The result is a pure 3D structure that better preserves the charge carriers needed for lasing, without adding significant optical loss.

‘Auger recombination’

To understand the improvement, the team analyzed how electrons and holes recombine under different pumping conditions. Auger recombination—where energy from a recombining electron-hole pair is given to another carrier instead of emitted as light—becomes especially problematic when the input light is delivered in longer pulses or continuous beams.

In those situations, carrier injection occurs on a timescale similar to or longer than the Auger lifetime, leading to rapid carrier loss and preventing the build-up of population inversion needed for lasing. By suppressing this process, the researchers were able to sustain the carrier densities required for efficient stimulated emission.


High-performance perovskite lasing via phase-reconstruction Auger suppression. Click for info


With their optimized films, the team built a single-mode vertical-cavity surface-emitting laser (VCSEL) that achieved a low lasing threshold of 17.3 μJ/cm2 and an impressive quality factor of 3850 under quasi-continuous nanosecond pumping. This performance marks the best reported to date for a perovskite laser in this regime.

The results point toward a practical route for making high-performance perovskite lasers that could work under true continuous-wave or electrically driven conditions—key milestones for their integration into future photonic chips and potentially flexible or wearable optoelectronic devices.

Source: optics.org

Powiązane rekomendacje
  • Mazak will push economical laser cutting processing equipment to Europe

    Recently, Yamazaki Mazak, a well-known Japanese machine tool manufacturer, announced that it will unveil its economic laser processing star Optiplex 3015 Ez for the first time in the European market at the upcoming 2024 EuroBLECH exhibition. This carefully crafted laser processing machine not only combines high-quality processing capabilities with affordable prices, but also aims to open the doo...

    2024-09-25
    Zobacz tłumaczenie
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Zobacz tłumaczenie
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Zobacz tłumaczenie
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    Zobacz tłumaczenie
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Zobacz tłumaczenie