Polski

Trumpf laser uses artificial intelligence technology to improve welding quality

41
2025-07-11 10:34:21
Zobacz tłumaczenie

At last month’s LASER World of Photonics exhibition in Munich, Germany, industrial solutions and laser giant Trumpf presented a new materials processing laser system solution specified to improve welding processes.

The system combines several sensors that monitor all process steps during laser welding. An integrated AI quality control system checks the weld seams, for example, and OCT (optical coherence tomography) monitors the welding depth of the laser.


Solution for laser welding


Martin Stambke, Product Manager, explained, “Our solution is unique on the market. We are offering all components, such as the beam source, sensors, and optics, from a single source. We also take care of installation, service, and programming of the system, which is tailored to a user.”

The new solution enables users to weld precision components that must be free of defects, such as batteries for electric cars or hairpins for electric motors. To ensure flawless weld seams, the user must set the optimum working distance between the various components and the laser. This is enabled by the programmable PFO 33 focusing optics, which can adjust the focus position of the laser independently.

‘2.5D mode’
“This so-called 2.5D mode is more cost-effective in many applications than 3D mode, in which the PFO can still move up and down during the welding process. This is because less complex controls and programming, as well as fewer moving axes, reduce acquisition, operating, and maintenance costs for the user,” said Stambke.

“In addition, it is faster for the optics to adjust the focus position themselves than to move the entire optics up and down in the laser cell. Our solution is therefore cost-efficient, yet powerful,” he said.

Better weld seam quality from the very first component With integrated optical coherence tomography (OCT), users can not only monitor the welding depth of the laser, but also check the distance between the laser and the component.

“This ensures the focus position of the laser and prevents welding errors,” said Stambke. “Moreover, VisionLine Inspect is used to check the quality of the manufactured components. A camera takes a picture of the weld seam and the system uses AI to detect any potential errors. By combining AI preprocessing and conventional algorithms, we are creating traceability and transparency.”

Source: optics.org

Powiązane rekomendacje
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Zobacz tłumaczenie
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    Zobacz tłumaczenie
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    Zobacz tłumaczenie
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Zobacz tłumaczenie
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    Zobacz tłumaczenie