Polski

Unsupervised physical neural network empowers stacked imaging denoising algorithm

448
2025-03-25 15:23:55
Zobacz tłumaczenie

In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engineering under the title of "Noise robust photography using unsupervised natural network".
Its core innovations and achievements are as follows:

1. Core issues and challenges
Stacked imaging uses diffraction patterns to invert the complex amplitude distribution of objects, but faces challenges in the following scenarios:
Complex noise environment: Poisson noise (signal-to-noise ratio 24.64dB) under low light conditions and mixed noise caused by random high-energy particles can lead to the failure of traditional algorithms
Dynamic bandwidth imaging: Non monochromatic light sources make non target wavelengths a new frequency domain noise source
Hardware limitations: Traditional iterative algorithms are slow and difficult to achieve fast imaging.

2. Method innovation
Propose a dual driven framework of "physical model+deep learning"
Data processing architecture: Zero padding preprocessing (e.g. 512 → 612 pixels) and four component output (amplitude/phase x object/probe) are used to improve axial resolution
Network topology optimization: Customize U-net architecture (with only 2.5 million parameters) to achieve four-dimensional parameter joint optimization, and extend the dynamic range of the "Conv2d tanh" phase layer to 2 π
Anti noise loss function: pioneering a dual loss mechanism (β=0.85-0.95) to balance overexposed areas (γ=1 → 0.1 gradient) and probe structured constraints, resulting in a 5-fold decrease in loss function

3. Experimental verification
Verify performance through 600 sets of tests:
Noise robustness: Under mixed noise (SNR 30dB), the SSIM value reaches 0.92 ± 0.03, which is about 14 times higher than ePIE
Speed advantage: The single convergence time is 729 seconds, which is 47.8% and 31.9% faster than AD and ePIE, respectively
Wide spectral adaptability: effectively separates ± 5nm noise components in the 405nm band, achieving a resolution of 57 line pairs/mm

4. Application prospects
Extreme Ultraviolet EUV Imaging: The method has been adapted to the Fresnel propagation model and can be extended to a wavelength of 13.5nm
Low dose dynamic monitoring: Effective suppression of readout noise under 300 μ s short exposure conditions (NPS=0.12)
Multi parameter joint calibration: achieving joint calibration along the axis (zPIE) and oblique incidence (aPIE) by adding output channels [35-36]
This study provides a breakthrough in both computer principles and experimental models for coherent imaging of new light sources (X-ray/EUV) and extreme operating conditions (low temperature/irradiation).


Figure 1. ProPtyNet algorithm details. (a) ProPtyNet network flowchart. (b) Details of U-net network architecture. (c) Data preprocessing and post-processing methods.


Figure 2. Simulation reconstruction results. (a) The true amplitude and phase of objects and probes. (b) The reconstruction results of ProPtyNet, ePIE, rPIE, and AD algorithms under Poisson noise, Gaussian noise, and mixed noise.


Figure 3. Experimental results. (a) The reconstruction results of sample amplitude information under different noise environments. (b) Comparison of amplitude cross-sections in the underlined section. (c) Comparison of loss functions in the iterative process.


Figure 4. Reconstruction results under broad-spectrum illumination (a) Experimental illumination light spectrum. (b) Simulation and experimental results.

Source: opticsky

Powiązane rekomendacje
  • SpaceX will sell satellite lasers to competitors that can accelerate space communication

    SpaceX President Gwynne Shotwell stated at a meeting on Tuesday that the company has started selling satellite lasers for fast space communication to other satellite companies.SpaceX's thousands of Starlink satellites in low Earth orbit use inter satellite laser links to transmit data to each other in space at the speed of light, so that the network can provide more extensive Internet coverage wo...

    2024-05-10
    Zobacz tłumaczenie
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Zobacz tłumaczenie
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Zobacz tłumaczenie
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    Zobacz tłumaczenie
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Zobacz tłumaczenie