Polski

China has successfully developed the world's first 193 nanometer compact solid-state laser

496
2025-03-24 15:25:47
Zobacz tłumaczenie

The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power will increase by a hundred times - when lasers are portable like laptops, precision manufacturing will usher in a mode revolution.

Deep ultraviolet (DUV) lasers play a crucial role in semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology due to their high photon energy and short wavelength characteristics. Compared with excimer lasers or gas discharge lasers, this type of laser has higher coherence and lower power consumption, providing the possibility for the development of system miniaturization.

 



According to Advanced Photonics Nexus, the research team of the Chinese Academy of Sciences has made an important breakthrough and successfully developed a compact all solid state laser system that can generate 193 nm coherent light. This wavelength is crucial for photolithography processes, which form the manufacturing foundation of modern electronic devices by etching complex circuit patterns on silicon wafers.

The new laser system has a working repetition rate of 6 kHz and uses a self-developed ytterbium doped yttrium aluminum garnet (Yb: YAG) crystal amplifier to generate 1030 nanometer fundamental frequency light.

Experimental device
The laser output is divided into two paths: one path generates 258 nanometer ultraviolet light (output power of 1.2 watts) through fourth harmonic conversion, and the other path drives an optical parametric amplifier to generate 1553 nanometer laser (power of 700 milliwatts).

 


Subsequently, these two beams of light were mixed with cascaded LBO (lithium triborate, LiB3O5) crystals to obtain a 193 nanometer deep ultraviolet laser output with an average power of 70 milliwatts and a linewidth less than 880 megahertz.

The research team innovatively loaded a spiral phase plate onto a 1553 nanometer beam before mixing, successfully obtaining a vortex beam carrying orbital angular momentum. This marks the first time internationally that a solid-state laser has directly output a 193 nanometer vortex beam.

 



This breakthrough achievement not only provides a new seed light source for hybrid ArF excimer lasers, but also demonstrates important application prospects in fields such as wafer processing, defect detection, quantum communication, and optical micro control.
This innovative laser technology not only improves the efficiency and accuracy of semiconductor lithography, but also opens up new paths for advanced manufacturing technology.

The successful generation of the 193 nanometer vortex beam may trigger a revolutionary change in the field of electronic device manufacturing and promote breakthrough progress in related technologies.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • CinIonic launches a new cinema screen specifically designed for laser theaters

    CinIonic announced the launch of a new cinema screen specifically designed for laser auditoriums. CinIonic Laser Screen 2.4 amplifies the power of laser projection by optimizing efficiency and enhancing screen presentation. This new screen is aimed at becoming the ideal companion for CinIonic Laser and is the first screen product in the CinIonic All Laser Solution portfolio.The CinIonic laser scre...

    2023-09-20
    Zobacz tłumaczenie
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    Zobacz tłumaczenie
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Zobacz tłumaczenie
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Zobacz tłumaczenie
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    Zobacz tłumaczenie