Nederlands

Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

940
2025-03-18 14:14:23
Bekijk vertaling

High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.

In response to this challenge, the team from the Bimberg Sino German Green Photonics Research Center at Changchun Institute of Optics and Fine Mechanics has adopted a high brightness vertical wide area edge emission (HiBBEE) structure in the vertical direction, using the photonic bandgap effect to replace the traditional total reflection principle for light field limitation, improving the size of the optical mode, and reducing the vertical divergence angle of semiconductor lasers; At the same time, in the lateral direction, non-uniform waveguides were used to suppress lateral higher-order modes, improve the lateral beam quality of semiconductor lasers, and optimize the design and preparation of HiBBEE non-uniform waveguide semiconductor lasers. At a current of 1.5A, the full width at half maximum of the vertical and lateral divergence angles is still as low as 8.6 ° and 5.1 °, while maintaining the fundamental mode output. The brightness is improved by 1.5 times compared to similar devices.

 


Schematic diagram of HiBBEE non-uniform waveguide semiconductor laser structure

 


HiBBEE non-uniform waveguide semiconductor laser brightness


This high brightness HiBBEE non-uniform waveguide semiconductor laser can significantly reduce the application cost of semiconductor lasers and has broad application prospects.

The first author of the article is Wu Chengkun, a doctoral student at the Sino German Center, and the corresponding author is researcher Tian Sicong. The research was supported by the Sino German International Cooperation Project of the National Natural Science Foundation of China (Research on 1250nm High Brightness Quantum Dot Laser for Lidar, No. 62061136010).

Source: opticsky

Gerelateerde aanbevelingen
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Bekijk vertaling
  • University of Science and Technology of China Reveals High Precision Planarity Measurement of Cryogenic Arrays

    Professor Wang Jian, Deputy Chief Designer of the Low Temperature Array High Precision Planeness Survey Wide Area Sky Survey Telescope (WFST) announced by the University of Science and Technology of China, and teacher of the State Key Laboratory of Nuclear Detection and Nuclear Electronics, School of Physics, University of Science and Technology of China, is a research team of the Chinese Academy ...

    2023-08-14
    Bekijk vertaling
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    Bekijk vertaling
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Bekijk vertaling
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Bekijk vertaling