Nederlands

Measuring invisible light through an electro-optic cavity

596
2025-02-19 14:46:40
Bekijk vertaling

Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "Light: Science and Applications".

The research team comes from the Department of Physical Chemistry at the Fritz Haber Institute of the Max Planck Society and the Radiation Physics Institute at the Helmholtz Dresden Rosendorf Research Center. By developing a tunable hybrid cavity design and measuring and modeling its complex set of allowed modes, physicists can accurately switch the nodes and maximum values of light waves at the target location. This study opens up new avenues for exploring ultrafast control of quantum electrodynamics and material properties.

 


Experimental principle of electro-optic cavity (EOC)


In this study, which has made significant progress in the field of cavity electrodynamics, the team proposed a new method for measuring the electric field inside the cavity. By utilizing an electro-optic Fabry Perot resonant cavity, they have achieved sub periodic time scale measurements that can obtain key information at precise locations where light matter interactions occur.

The study of cavity electrodynamics investigates how materials between mirrors interact with light and alter their properties and dynamic behavior. This study focuses on the terahertz spectral range, where low-energy excitation determines the fundamental properties of materials. Measuring new states with both light and material excitation properties inside the cavity will provide clearer understanding of such interactions.

The researchers also developed a hybrid cavity design that integrates adjustable air gaps and beam splitting detector crystals inside the cavity. This innovative design achieves precise control of internal reflection and can generate selective interference patterns as needed. Mathematical models support these observational results, providing key insights for decoding complex cavity dispersion and deepening our understanding of fundamental physical mechanisms.

This study lays the foundation for future research on cavity light matter interactions and has potential applications in fields such as quantum computing and materials science. The first author of the paper, Michael S. Spencer, stated, "Our work opens up new possibilities for exploring and regulating the fundamental interactions between light and matter, providing a unique toolkit for future scientific discoveries." The research team leader, Professor Sebastian Maehrlein, summarized, "Our electro-optic cavity provides a high-precision field resolved perspective, opening up new paths for experimental and theoretical cavity quantum electrodynamics research.

Source: opticsky

Gerelateerde aanbevelingen
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    Bekijk vertaling
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Bekijk vertaling
  • Leading listed laser company Novanta moves to new location

    Recently, Novanta, a pioneer in advanced laser and optical subsystems for medical and industrial applications, announced that the company will relocate from its original official address (Emery Court in Stockport, UK) to a state-of-the-art 70000 square foot factory facility in nearby Orion Business Park. Its business capabilities will also be expanded fourfold to serve an expanding team and custom...

    2024-08-08
    Bekijk vertaling
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Bekijk vertaling
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Bekijk vertaling