Nederlands

An innovative technology that can make light "bend"

272
2024-11-11 13:51:46
Bekijk vertaling

A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published in the latest issue of the journal Nature Physics under the title "Energy Transport in Diffuse Waveguides".

The research team pointed out that clouds, snow, and other white materials have similar effects on light: when photons shine on the surface of these objects, they are almost unable to penetrate and scatter in all directions. For example, when sunlight shines on cumulonimbus clouds, the light will reflect from the top of the cloud, making this part of the cloud appear bright and white; However, there is very little light reaching the bottom of the cloud, resulting in a dark color at the bottom of the cloud.

In order to simulate this natural phenomenon, the research team used opaque white materials and 3D printing technology to manufacture a new type of material, and constructed some small tunnels inside the material. When light shines on this material, it enters these tunnels and scatters. However, unlike scattering in nature, photons do not randomly scatter in all directions, but are guided back into the tunnel by opaque materials. Through this method, they successfully created a series of materials that can guide light in an orderly manner.

Compared with traditional solid materials, this new material increases the transmittance of light by more than two orders of magnitude and enables light to propagate in curved paths. Although this material cannot achieve long-distance transmission like optical fibers, its method is simple and cost-effective, with significant advantages.

The research team emphasizes that this technique of bending light can utilize existing semi transparent structures, such as tendons and fluids within the spine, to open up new avenues for medical imaging. The new technology can also be used to guide heat and neutrons, suitable for multiple engineering fields such as cooling systems and nuclear reactors.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Bekijk vertaling
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    Bekijk vertaling
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Bekijk vertaling
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    Bekijk vertaling
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Bekijk vertaling