Nederlands

Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

220
2024-10-26 11:36:19
Bekijk vertaling

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".

Figure 1. Demonstration of multi-color diffraction. (a) Diffraction setting. (b) Example image. (c) FT of (b). (d) Obtained through zero padding around (b). (e) FT of (d). (f) Obtain (e) through cropping.

The duration of attosecond light pulses is extremely short (1 attosecond=10-18 seconds), which is a direct and effective means to expand the study of ultrafast dynamics of microscopic matter and reveal underlying physical laws in multiple fields. The attosecond light pulse can achieve ultra-high time resolution, while also possessing characteristics such as short wavelength, high coherence, and high-precision synchronous control. However, the inherent ultra wide spectrum of attosecond light pulses introduces significant chromatic aberration in imaging systems, and the interference between different spectral components and the lack of high-quality optical components in the extreme ultraviolet/soft X-ray band have become bottlenecks restricting the development of attosecond imaging. Our goal is to overcome these technological challenges, achieve ultra-high spatiotemporal resolution imaging based on attosecond light sources, and promote the application of attosecond light sources in fields such as biomedicine, laser precision processing, and semiconductors, "said Wang Hushan, head of the attosecond imaging research team at the attosecond Science and Technology Research Center.

The new method for calculating imaging using lensless ultra wide spectrum proposed by the research team of Xi'an Institute of Optics and Fine Mechanics can extract high-quality clear monochromatic diffraction patterns from blurry ultra wide spectrum diffraction patterns, thereby achieving high-resolution imaging. This method significantly improves the applicable spectral bandwidth of a single coherent diffraction imaging light source, with a spectral bandwidth to center wavelength ratio of up to 140%, which is currently a relatively advanced level internationally, "said Li Boyang, a member of the Amis Imaging Research Team at the Amis Science and Technology Research Center. This study provides a key technological path for attosecond imaging, which is of great significance for the construction of advanced attosecond laser facilities (part of Xi'an) imaging terminals and the significant application expansion of attosecond light sources in China's major scientific and technological infrastructure.

Figure 2. (a) (d) Narrow band coherent diffraction imaging; (b) (e) Direct inversion results of broadband optical diffraction patterns; (c) (f) Broadband coherent diffraction imaging achieved by the monochromatization method proposed by the team

The 2023 Nobel Prize in Physics is awarded to three scientists in recognition of their experimental method of generating attosecond light pulses for studying the electronic dynamics of matter. Fu Yuxi, Deputy Director of Xi'an Institute of Optics and Fine Mechanics, introduced, "Since our establishment, we have had a solid theoretical research foundation in the field of ultrafast light science. In recent years, we have deployed fundamental, forward-looking, and systematic research in the field of ultrafast light science. In 2021, we specifically established the Ames Science and Technology Research Center, closely focusing on the forefront of world science and technology and major national needs, striving to build an international first-class innovative research platform and talent team, and providing key support for seizing the high ground in the field of ultrafast light science.

Source: Opticsky

Gerelateerde aanbevelingen
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    Bekijk vertaling
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Bekijk vertaling
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Bekijk vertaling
  • Progress in Research on Intervalley Scattering and Rabi Oscillation Driven by Coherent Phonons

    Two dimensional transition metal chalcogenides have multi valley structures in their energy bands, giving them electron valley degrees of freedom, making them an ideal platform for studying multi body interactions. As the main mechanism of valley depolarization, the valley scattering process of free electrons or bound excitons is crucial for exploring excited state electron phonon interactions and...

    2023-10-10
    Bekijk vertaling
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    Bekijk vertaling