Nederlands

Shanghai Institute of Optics and Fine Mechanics has achieved beam splitting vortex control and interference detection for the first time in the 46.9nm wavelength band

358
2024-10-17 11:48:39
Bekijk vertaling

Recently, Associate Researcher Zhang Junyong from the High Power Laser Physics Joint Laboratory of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, together with Professor Zhao Yongpeng's research group from Harbin Institute of Technology and Professor Zhan Qiwen's research group from Shanghai University of Technology, completed the experimental verification of 46.9nm band splitting vortex control and interference detection for the first time, opening up a feasible technical path for shorter wavelength structural splitting control and soft X-ray array structural imaging. The related achievements were published in Nanophotonics under the title "Vortex bifocusing of extreme ultraviolet using modified Fermat spectral photon sieve splitter".

Fresnel zone plates were successfully applied to X-ray focusing in the 1960s, and the emergence of photon screens in 2001 provided a device choice different from traditional zone plates for high-performance focusing of short waves. Vortex light carries orbital angular momentum, and its spiral phase wavefront causes a phase singularity at the center, resulting in a hollow beam. This has important potential applications in particle manipulation, optical communication, quantum information processing, high-resolution microscopy imaging, and other fields.

In principle, various types of spiral lines can generate similar vortex light fields. Based on this guiding principle, researchers have designed an improved Fermat spiral photon sieve for vortex beam splitting at a wavelength of 46.9nm. In the gas discharge plasma extreme ultraviolet 46.9nm laser experiment, two split vortex spots with opposite topological charges were successfully obtained. Figure 1 shows the results of the 46.9nm vortex focusing experiment, and Figure 2 shows the interference results of the two vortex rotations of the split beam with the reference light. The single cross wire indicates that the topological charge of the vortex rotation is 1, and the cross wire azimuth reflects the opposite chirality of the vortex light. Due to its natural hollow structure, self-supporting irregular photon screens are particularly suitable for short wavelength structural beam splitting control, which provides new development opportunities for future soft X-ray beam splitting vortex control and interference, structural control of high-order harmonic attosecond light, and array sensing imaging.

Figure 1. Focusing experiment of 46.9nm wavelength split vortex, (a) schematic diagram of optical path, (b) vortex focusing spot, (c) full width at half maximum.

Figure 2. Interference measurement of 46.9nm wavelength split vortex, (a-b) simulation results, (c) experimental results.

Relevant work has been supported by the National Natural Science Foundation of China, the Sailing Plan for Young Scientific and Technological Talents in Shanghai, and the Class A project of the Chinese Academy of Sciences' strategic leading science and technology project.

Source: Opticsky

Gerelateerde aanbevelingen
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Bekijk vertaling
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Bekijk vertaling
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    Bekijk vertaling
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Bekijk vertaling
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    Bekijk vertaling