Nederlands

Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

804
2024-09-05 14:08:08
Bekijk vertaling

Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot welding of ultra high strength steel for automotive applications".

 



This study investigated the effects of resistance spot welding (RSW) and laser spot welding (LBSW) processes on the microstructure evolution, load-bearing capacity, heat affected zone (HAZ) softening, and corrosion resistance of ultra-high strength steel (UHSS) joints welded using lap design. A dual phase 1000 grade (UHSDP1000) ultra-high strength steel plate with a thickness of 1.20 millimeters was welded using response surface methodology (RSM) optimized RSW and LBSW parameters. The microstructure characteristics of the welding area of RSW and LBSW joints were studied using an optical microscope (OM). The load bearing capacity of RSW and LBSW joints was evaluated using tensile shear failure load (TSFL) and cross tensile failure load (CTFL) tests. The fracture surfaces of TSFL and CTFL test samples were observed using scanning electron microscopy (SEM). The microhardness distribution of the RSW and LBSW joint area was evaluated and attributed to the TSFL and CTFL failures of the joint. The corrosion resistance of RSW and LBSW joints was analyzed using potential corrosion and immersion corrosion tests. The TSFL and CTFL durability of RSW joints are 183% and 62.79% higher than those of LBSW joints, respectively. Due to the smaller bearing area, the TSFL and CTFL durability of LBSW joints is not as good as that of RSW joints. This leads to stress concentration in the FZ and HAZ of the LBSW joint. RSW and LBSW joints exhibit TSFL and CTFL failures in fracture mode, accompanied by HAZ tearing. The reason for the failure of RSW and LBSW joints in the heat affected zone is softening caused by martensitic tempering and grain coarsening. The corrosion resistance of LBSW joints is worse than that of RSW joints, due to the higher content of martensite, which increases the proportion of pitting sites and reduces the corrosion resistance.

 


Figure 1. Potential applications of UHSS in automotive structural frameworks.

 


Figure 2. a) Images of RSW and b) LBSW machines used for manufacturing joints.

 


Figure 3. RSWed UHSDP1000 steel joint image: a) TSFL; b) CTFL test samples.

 


Figure 4. LBSWed UHSDP1000 steel joint image: a) TSFL; b) CTFL test samples.

 


Figure 5. a) Tensile testing machine setup; b) TSFL test setup; c) CTFL test setup.

 


Figures 6 and 7 respectively show a schematic diagram of the electrochemical corrosion test (top image) and a picture of the test sample (bottom image).

 


Figure 8. Typical macro images of spot welded joints: a) RSW and b) LBSW.

 


Figure 9. a) Images of TSFL samples with broken RSW joints and b) LBSW joints.

 


Figure 10. a) CTFL sample images of RSW joint and b) LBSW joint rupture.

 


Figure 11. a) Transverse BM section; b) Optical microstructure of longitudinal BM cross-section.

 


Figure 12. Microstructure of UHSDP1000 steel spot welded joint in different regions: a) FZ of RSW joint, b) UC-HAZ, c) IC-HAZ, d) LC-HAZ, and e) FZ of LBSW joint f) UC-HAZ、g) IC-HAZ、h) LC-HAZ。

summary
1. The FZ microstructure of RSW joint shows the evolution of acicular ferrite, Flat noodles martensite and polygonal ferrite. Since the cooling rate of LBSW is faster than that of RSW, FZ of LBSW joint shows a finer lath martensite structure and a certain proportion of acicular ferrite.

2. Compared with the LBSW joint, the TSFL and CTFL durability of the RSW joint have been improved by 183% and 62.79%, respectively. Due to the relatively small load-bearing area, the TSFL and CTFL durability of LBSW joints is not as good as that of RSW joints. This leads to stress concentration in the FZ and softened HAZ of the LBSW joint.

3. RSW joint and LBSW joint fracture failure, UHSDP1000 steel tearing in HAZ. The RSW joint exhibits a ductile failure mode, while the LBSW joint shows a combination of ductile and brittle failure modes, due to stress concentration in the softened HAZ leading to more tearing on the HAZ side.

4. The HAZ hardness of RSW and LBSW joints has significantly decreased, leading to HAZ softening problems, mainly due to the presence of a large amount of martensite in the microstructure of UHSDP1000 steel.

5. The TSFL failure of RSW and LBSW joints in the HAZ is attributed to softening caused by martensitic tempering and grain coarsening in the HAZ.

6. Compared with RSW joints, LBSW joints have higher FZ hardness, mainly due to the finer martensitic microstructure in FZ.

7. The corrosion resistance of LBSW joints is lower than that of RSW joints, because the martensite content is higher, which is conducive to an increase in the proportion of pitting sites and a decrease in corrosion resistance.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    Bekijk vertaling
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Bekijk vertaling
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    Bekijk vertaling
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    Bekijk vertaling
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Bekijk vertaling