Nederlands

Nanchang University has made progress in intelligent photoacoustic tomography imaging

594
2024-08-13 15:14:55
Bekijk vertaling

Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only collect photoacoustic signals from a limited detection angle, which inevitably leads to a decrease in the image quality of photoacoustic tomography. How to achieve high-quality reconstruction under limited perspective sampling has always been an urgent problem that PAT needs to solve.

Recently, a research team from the Imaging and Visual Representation Laboratory at Nanchang University proposed a high-quality photoacoustic tomography imaging method based on a fractional diffusion model under limited viewing angles. The achievement was published in Photoacoustics, a top journal in the field of optoacoustics, under the title "Score based generative model assisted information compensation for high-quality limited view reconstruction in photoacoustic tomography".

Main research content
The research team proposed a photoacoustic tomography reconstruction method based on the fractional diffusion model. During the training phase, the model learns the data distribution of the samples by gradually adding noise to the existing samples. In the reconstruction stage, this method uses the prior information about image reconstruction learned by the diffusion model as the regularization term in the iterative reconstruction algorithm, and through cyclic iteration, high-quality photoacoustic tomography imaging under limited viewing angles can be achieved.

Figure 1. Process diagram of PAT reconstruction based on diffusion model method from a limited perspective.

As a validation, the research team evaluated the performance of the proposed method using experimental data from circular phantoms and live mice. In the circular phantom reconstruction experiment, this method was compared with traditional delay summation method (DAS), gradient descent method without regularization term (GD), gradient descent method with Tikhonov regularization term, U-Net method, and GAN method. The results are shown in Figure 2. The proposed method shows higher quality and clearer contours in the reconstruction results under different limited viewing angles. At a limited viewing angle of 70 °, the proposed method achieved peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of 31.57dB and 0.95, respectively, which were improved by 203% and 48% compared to the delay summation method.

Figure 2. Reconstruction results of circular phantom.
From the experimental results of the simulated small balls and live mice (experimental data), it can be seen that this method still has good performance (Figure 3). Specifically, in extremely limited detection angles (such as a 90 ° limited angle), this method outperforms the U-Net method significantly. In live mouse experiments, this method achieved an SSIM/PSNR of 0.80/29.18 dB in reconstructed images with a limited viewing angle of 90 °. Compared to the U-Net method, the PSNR increased by 64% and the SSIM increased by 48%.

Figure 3. Reconstruction results of live data from different detection perspectives.

Conclusion and Prospect
This study proposes a new high-quality photoacoustic tomography imaging strategy based on the fractional diffusion model under limited viewing angles. This method combines the physical model of PAT with the diffusion model, and introduces high-dimensional prior information learned by the diffusion model deep network in the model-based iteration process. This method significantly improves the imaging quality and effectively solves the problem of image quality degradation caused by limited viewing angle sampling in PAT, with the potential to accelerate PAT imaging speed and expand its application range.

Guo Kangjun, master's student Zheng Zhiyuan, master's student Zhong Wenhua, and master's student Li Zilong from Nanchang University are co first authors of the article. Professor Liu Qiegen and Associate Professor Song Xianlin are co corresponding authors. This study was supported by the National Natural Science Foundation of China and the Key Research and Development Project of Jiangxi Province.

Source: Opticsky

Gerelateerde aanbevelingen
  • Germany's TRUMPF launches 50000 watt fiber laser

    TRUMPF will launch a new generation of efficient fiber lasers at the Munich Light Expo in Germany, which can meet the diverse welding needs of the entire industry, such as high-precision welding of electric vehicle batteries. Tom Rentschler, Product Manager of TRUMPF Fiber Laser, said, "The new generation TruFiber laser is the core engine of our production solutions. Through deep collaboration wit...

    06-20
    Bekijk vertaling
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    Bekijk vertaling
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Bekijk vertaling
  • Lingke LP series industrial connectors provide fast, reliable, and efficient electrical connections for laser equipment

    Laser technology is currently a very mature technology and has been used on various laser equipment, such as laser cutting machines, laser projectors, medical laser equipment, etc. Advanced laser equipment requires high-performance and reliable industrial connectors to provide stable and safe power input and connection, which is one of the key links for the normal operation of laser equipment.Ling...

    2023-10-25
    Bekijk vertaling
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    Bekijk vertaling