Nederlands

Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

775
2024-08-09 14:10:35
Bekijk vertaling

The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;
An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;

Based on over 20 years of experience in pulse laser technology.

Shanghai, China, August 8, 2024- AMS, a leading global optical solutions provider, announced today that it will launch an innovative high-performance 8-channel 915nm SMT pulse laser - SPL S8L91A_3 A01- to empower autonomous driving, simplify system design, and enhance performance, making long-range detection lidar more efficient and reliable. The SPL S8L91A_3 encapsulated by QFN has been applied to the laser radar systems of autonomous vehicle such as passenger cars, trucks and driverless taxis, greatly improving the operation, navigation and data processing capabilities of the auto drive system.

SPL S8L91A_3 A01 application image (Image: AMS Osram)

In autonomous driving applications, SPL S8L91A_3 A01 is used to significantly enhance long-range high-resolution LiDAR systems. With AEC-Q102 certification and an 8-channel EEL (edge emitting laser) packaged in QFN, AMS Osram now offers a more diverse range of infrared components for system developers to choose from. The peak optical power of this new product is 1000W, with an efficiency of up to 30% and outstanding performance.

Autonomous driving is one of the most discussed topics about the future, and most system suppliers firmly believe that LiDAR is essential for advanced autonomous driving. For over 20 years, in the field of development and production of automotive LiDAR pulse infrared lasers, AMS Osram has been an important participant in the autonomous driving market - delivering over 20 million units, with experience and quality fully recognized by the market. SPL S8L91A_3 A01 is the latest product lineup launched based on the company's rich experience in automotive LiDAR technology.

SPL S8L91A_3 A01 is an advanced infrared high-power SMT laser tailored for laser radar applications. It adopts a single-chip integrated 8-channel design, with each laser channel providing 125W of power, resulting in a total peak optical power of 1000W, greatly enhancing the performance of long-distance laser radar systems that are crucial for highway autonomous driving. This laser has 4 individually addressable anodes, each connected to two parallel operating laser channels. Thanks to the addressing function, customers are able to flexibly design the final product.

SPL S8L91A_3 A01 product image (Image: AMS Osram)

The use of integrated laser packaging can achieve more compact and efficient settings, without the need for alignment between multiple components, thus simplifying the design and manufacturing process. This integration not only shortens development time, but also significantly improves the reliability and performance of the final product. The design of this laser adopts the proprietary wavelength stabilization technology of AMS Osram, which can significantly reduce wavelength drift caused by temperature changes, thereby improving the signal-to-noise ratio (SNR) of the laser radar system and expanding the detection range.

SPL S8L91A_3 A01 is designed to meet the strict requirements of the automotive industry, with performance specifications that meet and exceed AEC-Q certification standards. The QFN packaging of this laser is key to ensuring reliable design and providing a durable solution to meet the challenges of automotive environments. In addition to the laser radar system that can be widely used in autonomous vehicle, the new laser can be used in industrial laser radar, which can improve the performance of applications such as robots, security monitoring, smart cities and the last mile delivery.

Our new 8-channel laser module will revolutionize the autonomous driving industry. It simplifies system design and improves performance, making long-range LiDAR systems more effective and reliable. By integrating our advanced wavelength stabilization technology, we can ensure excellent performance under different working conditions, "said Clemens Hofmann, Senior Chief Engineer of AMS Osram Lidar
SPL S8L91A_3 A01 will be launched this autumn.

Source: AMS Osram

Gerelateerde aanbevelingen
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Bekijk vertaling
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Bekijk vertaling
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    Bekijk vertaling
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Bekijk vertaling
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    Bekijk vertaling