Nederlands

Samsung and SK Hynix Explore Laser Debonding Technology

922
2024-07-16 14:45:46
Bekijk vertaling

According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will also undergo changes.

It is reported that Samsung Electronics and SK Hynix are currently working with partners to develop a laser method to replace HBM with wafer exfoliation (debonding) technology.

Wafer debonding is the process of separating a thinned wafer from a temporary carrier during the manufacturing process. In the semiconductor manufacturing process, the main wafer and the carrier wafer are bonded together with adhesive and then peeled off with a blade, hence it is called mechanical debonding.

As the number of layers in HBM increases, such as 12 or 16 layers, the wafer becomes thinner, and the use of blade separation methods faces limits. When the wafer thickness is less than 30 microns, there is a concern about damaging the wafer, so the process steps of etching, polishing, wiring, etc. are increased. At the same time, new adhesives that are suitable for ultra-high temperature environments need to be used. This is also the reason why the two companies chose to use lasers instead of traditional mechanical methods.

Industry insiders familiar with the issue explained that "in order to cope with extreme process environments, stronger adhesives are needed, which cannot be separated by mechanical means. Therefore, the new technology of laser has been introduced," and stated that "this is an attempt to stably separate the main wafer and the carrier wafer.

Samsung Electronics and SK Hynix are considering using various methods such as extreme ultraviolet (EUV) laser and ultraviolet (UV) laser.
Laser debonding is believed to be introduced first into the 16 layer HBM4. HBM4 uses a system semiconductor based "base chip" at the bottom of stacked DRAM memory, requiring finer processes and thinner wafers, so laser technology is considered appropriate.

When using lasers, changes in the supply chain of related materials and equipment are inevitable. The existing mechanical methods are dominated by Tokyo Electric of Japan and S Ü SS MicroTec of Germany, which occupy the top two positions in the market. Laser technology may attract more equipment companies and is expected to engage in fierce competition.

The wafer debonding adhesive is mainly supplied by 3M in the United States, Shin Etsu Chemical in Japan, Nissan Chemical, TOK, and others. It is reported that these companies are also developing new adhesive materials that can be used for laser methods instead of existing mechanical methods.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    Bekijk vertaling
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    Bekijk vertaling
  • CinIonic launches a new cinema screen specifically designed for laser theaters

    CinIonic announced the launch of a new cinema screen specifically designed for laser auditoriums. CinIonic Laser Screen 2.4 amplifies the power of laser projection by optimizing efficiency and enhancing screen presentation. This new screen is aimed at becoming the ideal companion for CinIonic Laser and is the first screen product in the CinIonic All Laser Solution portfolio.The CinIonic laser scre...

    2023-09-20
    Bekijk vertaling
  • Marilli won the "2024 CES Innovation Award": Laser and optical taillights produce 1mm of light

    Marelli is a company specialized in the field of automotive lighting, which has won the prestigious "2024 CES Innovation Award Winner" for its revolutionary red laser and fiber optic taillight technology. This innovative solution, showcased at the 2024 Consumer Electronics Show, for the first time combines the functionality of red laser with taillights, opening up a new perspective for car design....

    2024-01-16
    Bekijk vertaling
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Bekijk vertaling