Nederlands

Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

195
2024-07-10 14:33:18
Bekijk vertaling

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion of Aluminum Phosphate Glasses".

Alkaline aluminum phosphate glass has important applications in the solidification of nuclear waste glass and other fields. Among them, chemical stability is crucial for its application. To gain a deeper understanding of the chemical stability of glass, it is necessary to understand its chemical corrosion mechanism. The study of glass corrosion mechanisms has a long history, but there are still many controversies. Previous research has mainly focused on borosilicate glass, while there has been less research on the corrosion mechanism of phosphate glass.

In this study, researchers conducted atomic scale analysis of the structure of alkali aluminum phosphate glass before and after corrosion using various advanced nuclear magnetic resonance techniques, and found that there were two different dissolution modes of the Q1 and Q0 groups in the glass in aqueous solution. This confirms that the crystal layer on the surface of phosphate glass originates from the dissolution of glass components and subsequent deposition on the glass surface. Revealed the dissolution mechanism of alkaline aluminum phosphate glass in aqueous solution and the formation mechanism of surface crystal layer. The research results deepen our understanding of the chemical stability mechanism of alkaline aluminum phosphate glass.

(a) The two dissolution modes of glass. (b) 27Al {27Al} 2D WURST 2Q-1Q spectrum of corroded glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Gerelateerde aanbevelingen
  • Tower Semiconductor is preparing to add laser integrated PIC for Scintil

    Grenoble stated that in the context of growing demand driven by artificial intelligence and 5G, "key" milestones have strengthened its supply chain.Scantil Photonics, a subsidiary of CEA Leti that focuses on silicon photonics, has stated that its integrated laser design is now being produced by Tower Semiconductor, a wafer foundry partner.This method describes this development as a "crucial step f...

    2024-02-29
    Bekijk vertaling
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Bekijk vertaling
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    2024-01-29
    Bekijk vertaling
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Bekijk vertaling
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    Bekijk vertaling