Nederlands

TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

465
2024-07-01 14:39:36
Bekijk vertaling

It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".

The electric vehicle (EV) industry is experiencing unprecedented growth, driven by the global shift toward sustainable transportation. Laser welding has become an important technology in the industry, providing a convenient way to reduce production costs and expand manufacturing options for new battery and electric drive technologies. Although lasers have developed rapidly and power levels have reached 24kW or higher, how to effectively apply such high laser power in the welding process remains a challenge.

This article explores the gap between available laser power during hairpin welding and translating it into higher productivity. These limitations, especially in melt pool dynamics, prevent the full potential of high laser powers from being realized. To address this challenge, researchers have explored innovative beam shaping methods to overcome these limitations and utilize higher laser power during welding. Through detailed demonstrations, researchers show how new beam shaping techniques can be applied to make higher laser powers practical in welding, boosting productivity to unprecedented levels. This research not only helps optimize laser welding of electric vehicle components, but also opens the door to wider applications of advanced manufacturing technology.

superimposed laser beams

Welding the contacts of various batteries or electronic drives (mainly made of aluminum, copper and steel) requires a low-spatter process with low heat input and no pores in the weld. Additionally, the penetration depth and volume of molten material should be kept to a minimum. To meet these requirements, the process must be stabilized by controlling the shape and dynamics of the keyhole and surrounding molten pool.

In view of these characteristics, the researchers adopted a TRUMPF BrightLine Weld welding method to control the welding process by stabilizing the keyhole. This is achieved by superimposing two laser beams (a core beam and a ring fiber beam). This will have a stabilizing effect on the keyhole and surrounding molten pool. This innovative technology is used in a wide range of applications involving copper, aluminum and steel components, such as in the electric vehicle industry.

Figure 1 shows the beam profile of the superimposed laser beam from the TruDisk BrightLine Weld laser source in the focal plane. The sketch shows two beams superimposed and directed into the keyhole. The keyhole opening therefore has a conical shape compared to the case without the ring beam, which is the main effect for stabilization during machining. This phenomenon not only creates stable keyholes but also allows a significant increase in molten material near the surface. Both effects are critical to reducing spatter and void formation.

Figure 1 Effect of BrightLine Weld on the welding process. The laser beam is coupled to the inner fiber core and the coaxial ring fiber.

Table 1 Experimental configuration

Welding results

The laser-based hairpin welding process represents a significant challenge as it requires precise and fast connections while minimizing void formation, heat input and spatter. Preventing instabilities and achieving precise connections in hairpin stator designs requires a deep understanding of the process. At the same time, there is a need to maintain high process efficiency, minimize material loss, and optimize cycle times while maintaining structural integrity. Multimode lasers with 2-in-1 fiber guide function are mainly used for welding copper hairpins. The laser power is high and the quality requirements are strict. Compared to other high-power beam shaping technologies, TRUMPF's BrightLine welding technology (available for disk lasers and fiber lasers) is able to utilize the full laser power. Optics for fiber coupling are designed to support interchangeable fibers and integrate multiple beam outputs while maintaining beam quality integrity.

Figure 2 BrightLine Weld is an optical wedge used to adjust the power distribution between the core and ring fiber.

To address the challenges of short process times and minimizing spatter and porosity, BrightLine Weld technology was used to ensure a strong, conductive connection that significantly reduces porosity and spatter compared to processes using core fibers alone (see Figure 3). Dynamically adjusting the laser power split ratio between the core and ring fibers during the welding process provides a synergistic approach that combines fast processing times with reduced porosity generation. Throughout the welding process, the laser power alternates between the core and ring fibers to optimize the results. Although spatter is reduced, a small amount of spatter can still be observed under this process strategy.

Figure 3 Comparison of welding performance of the TruDisk 8000 multimode laser using single-core, static and dynamic BrightLine Weld processes. Corresponding spatter and pore images show improved speed and quality of the dynamic BrightLine mode process.

To address the challenges of short processing times and minimization of spatter and porosity, the application of BrightLine Weld technology ensures a robust conductive connection that significantly reduces porosity and spatter compared to processing using core fiber alone (see Figure 3). Dynamic adjustment of the laser power distribution ratio between the core and ring fibers during the welding process provides a synergistic approach that combines fast processing times with reduced pore generation. Throughout the welding process, the laser power alternates between the core and the ring fiber to optimize the welding effect. After adopting this process strategy, although the spatter was reduced, a small amount of spatter was still observed.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Fraunhofer IZM launches quantum cascade project to develop modular laser system

    Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.This week the IZM repor...

    3 dagen geleden
    Bekijk vertaling
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    Bekijk vertaling
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    Bekijk vertaling
  • NKT Photonics utilizes fiber lasers to achieve deep space communication links

    On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-...

    07-21
    Bekijk vertaling
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Bekijk vertaling