Nederlands

New laser technology can achieve more efficient facial recognition

223
2024-06-24 14:15:46
Bekijk vertaling

Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.

Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry Planck interferometer, researchers accurately measured the spectral purity of the laser and found that its linewidth was extremely narrow, only 56 MHz or 0.24 μ eV, which was ten times smaller than previous records.

This milestone progress enables polarized lasers to compete with industry-leading VCsel technology, especially in applications such as facial recognition and augmented reality. Importantly, polarized lasers not only have excellent performance, but also are more energy-efficient. Their working power is lower, thanks to their unique boson condensation state, in which light generation does not require the massive energy required by traditional lasers.

This feature has enormous potential for application in the field of biometrics, especially in facial recognition. Although vertical cavity surface emitting lasers (VCSELs) are widely used in facial recognition devices due to their high efficiency and reliability, polarized lasers provide a more energy-efficient option. Without sacrificing performance, they can make facial recognition devices more energy-efficient, which helps promote the sustainable development of related technologies.

In addition, the research report also reveals another major advantage of polarized exciton lasers: they can maintain high spectral purity even when overlapping with poorly organized particles. This used to lead to severe noise and performance degradation, but research teams have found that as long as polarons are placed in enclosed spaces, the noise generated by these particles can be minimized. This characteristic makes polarized exciton lasers more practical in various biometric systems that require reliable operation.

It is worth mentioning that the narrow linewidth of polaron lasers endows them with extremely long coherence time. Coherence time refers to the time it takes for a laser to maintain high-quality light, which is crucial for fast and continuous execution of thousands of operations, especially in advanced applications such as quantum computing. The coherence time of polaron lasers is at least 5.7 nanoseconds, which may seem brief but is sufficient to meet the needs of these advanced applications.

In summary, the research results of the FLEET team not only demonstrate the tremendous progress of laser technology, but also bring new energy-saving and efficient choices for biometric fields such as facial recognition. With the continuous development and improvement of technology, we have reason to believe that polarized lasers will lead a revolution in facial recognition technology in the future.

Source: OFweek

Gerelateerde aanbevelingen
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    2024-03-09
    Bekijk vertaling
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    Bekijk vertaling
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Bekijk vertaling
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    Bekijk vertaling
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    Bekijk vertaling