Nederlands

New laser technology can achieve more efficient facial recognition

385
2024-06-24 14:15:46
Bekijk vertaling

Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.

Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry Planck interferometer, researchers accurately measured the spectral purity of the laser and found that its linewidth was extremely narrow, only 56 MHz or 0.24 μ eV, which was ten times smaller than previous records.

This milestone progress enables polarized lasers to compete with industry-leading VCsel technology, especially in applications such as facial recognition and augmented reality. Importantly, polarized lasers not only have excellent performance, but also are more energy-efficient. Their working power is lower, thanks to their unique boson condensation state, in which light generation does not require the massive energy required by traditional lasers.

This feature has enormous potential for application in the field of biometrics, especially in facial recognition. Although vertical cavity surface emitting lasers (VCSELs) are widely used in facial recognition devices due to their high efficiency and reliability, polarized lasers provide a more energy-efficient option. Without sacrificing performance, they can make facial recognition devices more energy-efficient, which helps promote the sustainable development of related technologies.

In addition, the research report also reveals another major advantage of polarized exciton lasers: they can maintain high spectral purity even when overlapping with poorly organized particles. This used to lead to severe noise and performance degradation, but research teams have found that as long as polarons are placed in enclosed spaces, the noise generated by these particles can be minimized. This characteristic makes polarized exciton lasers more practical in various biometric systems that require reliable operation.

It is worth mentioning that the narrow linewidth of polaron lasers endows them with extremely long coherence time. Coherence time refers to the time it takes for a laser to maintain high-quality light, which is crucial for fast and continuous execution of thousands of operations, especially in advanced applications such as quantum computing. The coherence time of polaron lasers is at least 5.7 nanoseconds, which may seem brief but is sufficient to meet the needs of these advanced applications.

In summary, the research results of the FLEET team not only demonstrate the tremendous progress of laser technology, but also bring new energy-saving and efficient choices for biometric fields such as facial recognition. With the continuous development and improvement of technology, we have reason to believe that polarized lasers will lead a revolution in facial recognition technology in the future.

Source: OFweek

Gerelateerde aanbevelingen
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Bekijk vertaling
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    Bekijk vertaling
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Bekijk vertaling
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Bekijk vertaling
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    Bekijk vertaling