Nederlands

Chip guided beam for new portable 3D printers

685
2024-06-18 15:54:21
Bekijk vertaling

Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a crucial step towards realizing the aforementioned ideas. The relevant paper was published in the latest issue of the journal Light: Science&Applications.

Yelena Natalas, senior author of the paper and professor of electrical engineering and computer science at MIT, stated that her team has previously developed an integrated optical phased array system, which uses a series of micro antennas placed on the chip to control the beam of light and move it in a specific direction. The research team aims to explore whether this device can be used to manufacture chip based 3D printers. At the same time, the research team at the University of Texas at Austin demonstrated for the first time a specialized resin that can be rapidly cured using visible light. The two teams hit it off and the first chip based 3D printer emerged.

The 3D printer prototype consists of a single photon chip containing a 160 nanometer thick optical antenna array, and the entire chip can be placed on a coin. The chip can emit reconfigurable beams of light into the synthetic resin trap. When the beam of light shines on it, the synthetic resin trap solidifies into a solid shape and can be fully formed within a few seconds.

The research team points out that this portable 3D printer is expected to be applied in multiple fields. For example, clinical doctors can customize medical equipment for patients, engineers can quickly create prototypes of parts on the job site, and so on.

Source: Science and Technology Daily

Gerelateerde aanbevelingen
  • Mechanism of Time Power Modulation Increasing Weld Depth in High Power Laser Welding

    Researchers from the Hanover Laser Center and Leibniz University in Germany reported on the mechanism of increased welding depth during time power modulation in high-power laser beam welding. The related paper titled "Mechanisms of Increasing Welding Depth during Temporary Power Modulation in High Power Laser Beam Welding" was published in Advanced Engineering Materials.Understanding the basic mec...

    2024-12-18
    Bekijk vertaling
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    Bekijk vertaling
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Bekijk vertaling
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Bekijk vertaling
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    Bekijk vertaling