Nederlands

EO Technologies from South Korea enters the glass substrate processing market

516
2024-06-18 15:44:27
Bekijk vertaling

Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.

It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass substrates. EO Technologies has now started providing relevant laser process equipment to Samsung Electronics and Apple (based on end users).

Previously, EO Technologies focused on the laser drilling market based on its ability to produce DPSS ultraviolet laser sources, and supplied UV laser drilling equipment to PCB manufacturers such as Samsung Electric, whose end users are Samsung Electronics.

Since the end of last year, companies such as Samsung Electric have expressed their intention to enter the glass substrate business. It seems that the concept of glass substrates is gradually deeply integrated into the existing PCB market. However, currently, Samsung Electric's UV laser drilling equipment has relatively small sales in the PCB business field.

According to industry insiders, since the second half of last year, EO Technologies has been using TGV drilling equipment for glass substrate processing for multiple customers, including Samsung Electric, and is currently conducting yield testing.

Given that the market is still in its early stages, Samsung Electronics' packaging technology is expected to take at least 1 to 2 years to mature. However, once entering the mass production stage, this technology will form a synergistic effect with Samsung Electronics' memory department and its renowned laser marking supply line, jointly forming a promising sales growth point.

The core challenge of glass substrate TGV technology lies in successfully penetrating the drill bit through the core layer and the insulation layer of ABF. The industry has highly praised EO Technologies' UV laser drilling equipment, as it uses low pulse, high-energy laser technology to accurately drill holes with diameters as low as 10um or even smaller.

However, the key to this process lies in overcoming the problem of glass breakage to ensure high yield during mass production.
According to the latest news, EO Technologies' UV laser drilling technology on double-layer glass substrates is nearing commercialization, but overcoming material vulnerability is still considered a key prerequisite for technological breakthroughs. At present, the estimated production of this technology is still below 50%.

Since 2020, EO Technologies has been providing laser annealing equipment for Samsung Electronics' DRAM 1z (15nm level) mass production process, and has the same equipment on the HBM production line. Based on its long-term partnership with Samsung Electronics, EO Technologies has recently expanded its customer network to include TSMC and Apple.

It is worth mentioning that Apple is currently actively evaluating the application prospects of glass substrate technology in the next generation of mobile application processors (APs), and the possibility of cooperation with companies such as Samsung Electric is gradually increasing.

This may be an opportunity for EO Technologies, which has established a solid cooperation framework with Samsung and Apple. At present, Samsung Electric has successfully provided the relevant process products to Apple.

As of now, EO Technologies has not confirmed this incident. According to an insider, EO Technologies is currently testing laser drilling machines related to glass substrates, but due to strong NDA (confidentiality agreement) with customers, further progress is difficult to confirm.

Source: OFweek

Gerelateerde aanbevelingen
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Bekijk vertaling
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    Bekijk vertaling
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    Bekijk vertaling
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Bekijk vertaling
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    Bekijk vertaling