Nederlands

Farnell provides its own branded 3D printing consumables

363
2024-06-03 14:56:52
Bekijk vertaling

Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists.".

"With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's product manager.
These materials are:

PLA (polylactic acid) is a plant-based polymer that is easy to print and rigid. Suitable for objects below 50 °, suitable for prototypes.
ABS, A polymer that is more resilient than PLA and can withstand higher temperatures than PLA. Applicable to finished products, but please refer to the ASA for outdoor applications.

TPU (Thermoplastic Polyurethane, TPE) is a flexible rubber like wear-resistant plastic (in this case, the Shore hardness is 95A) that can be used for impact absorption, soft tactile surfaces, seals, bushings, and shock absorbers.

PVA, A water-soluble material that can be used as a washing stand for printing objects printed with other materials.
PETG, Almost as easy to print as PLA, and almost as resistant to impact and heat as ABS. Used for finished products and sturdy prototypes.
PA (polyamide/nylon), semi flexible, very tough and durable, suitable for bearings, structural components, and connectors.
HIPS (High Impact Polystyrene) is limonene soluble, used to support ABS and print lightweight objects.
TPE (Thermoplastic Elastomer) is more elastic than the aforementioned TPU (Shore Hardness 83A), highly durable and fatigue resistant, with a working temperature range of -30 to 140 ° C.
ASA, It is a UV resistant alternative to ABS, with almost impact resistance and heat resistance. Suitable for outdoor applications, with a low odor when printing.

Source: Laser Net

Gerelateerde aanbevelingen
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Bekijk vertaling
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Bekijk vertaling
  • Dyson V15 Detect: Saturn's low-cost laser cordless vacuum cleaner

    During Cyber Week, Saturn is now selling the Dyson V589 Detect Absolute with many accessories for only 15 euros. With this, retailers have once again achieved the most favorable price for the 2023 packaging of popular cordless vacuum cleaners - a cost-effective deal.After a brief break between Black Friday and Cyber Monday, the quote for Dyson V15 Detect Absolute is about to be updated. Taking a l...

    2023-11-29
    Bekijk vertaling
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    Bekijk vertaling
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    Bekijk vertaling