Nederlands

Korean researchers use laser ablation to create deformable micro supercapacitors

698
2024-05-30 15:22:30
Bekijk vertaling

Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices.

 


This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in emerging health monitoring and other applications.
MSC provides customizable shape factors, reliable performance, effective space utilization, and easy integration with electronic components, making them a strong competitor to meet this demand. However, solid metals such as gold, which are commonly used to collect current in MSCs, have limited stretching ability and limit deformation potential.

In order to manufacture deformable micro supercapacitors (MSCs) that can bend and stretch without damaging or losing function, researchers chose a liquid metal - eutectic gallium indium alloy (EGaIn) as the current collector. EGaIn is highly deformable due to its high conductivity and liquid properties. However, how to utilize EGaIn to manufacture high-density digital inter mode to ensure high-energy storage performance has become a technical challenge.

Highly deformable micro supercapacitors (MSCs) are based on liquid metal current collectors. The researchers cleverly utilized laser ablation technology to achieve a perfect combination of high capacity and flexibility in micro supercapacitors (MSCs). They chose graphene as the electrode material and polystyrene block copolymer (SEBS) as the flexible substrate material. By uniformly laying EGaIn thin film on SEBS substrate through brush method and covering it with graphene, a digital graphene EGaIn electrode was finally created using laser ablation technology.

In optimizing the laser ablation process, researchers ensured complete ablation of graphene and EGaIn without damaging the SEBS substrate. Due to the ability of graphene and EGaIn films to absorb laser light at a wavelength of 355 nm, while SEBS materials do not absorb any light, the team successfully achieved selective ablation of graphene EGaIn electrodes without sacrificing the flexibility of SEBS substrates.

By finely controlling the gap between adjacent digital electrodes and graphene mass charges, researchers achieved a region capacitance of up to 1336 μ F cm-2 and demonstrated reliable rate performance. What's even more remarkable is that these MSCs can withstand up to 1000 stretching and contraction cycles without affecting energy storage performance.

To verify the practicality of MSC as a deformable power source, researchers constructed a soft electronic system consisting of a series and parallel MSC array integrated with LEDs. The system, relying on the liquid characteristics of the EGaIn current collector and the flexibility of the SEBS substrate, can operate stably under various mechanical deformations (such as folding, stretching, twisting, etc.), fully demonstrating its powerful energy storage performance.
Laser technology has played a crucial role in this research, enabling efficient application of liquid metals in MSC current collectors. Researcher Chanwoo Yang said, "Laser technology not only ensures the accuracy of work, but also accelerates the entire manufacturing process."

In addition, laser ablation technology is also suitable for patterning various electrode materials, including carbon materials, metal oxides, and Mxene, providing broad prospects for the development of deformable and high-performance energy storage systems.

With the rapid development of microelectronics and optoelectronics technology, miniaturized and elastic energy storage devices have become crucial, from folding and rolling equipment to stretching equipment in applications such as electronic textiles and healthcare. And this deformable MSC research based on laser ablation technology will undoubtedly provide strong support for the development and commercialization of elastic energy storage devices, and demonstrate enormous application value in multiple industrial fields.

Source: OFweek

Gerelateerde aanbevelingen
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    Bekijk vertaling
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    Bekijk vertaling
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    Bekijk vertaling
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Bekijk vertaling
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Bekijk vertaling