Nederlands

The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

339
2023-09-02 14:48:48
Bekijk vertaling

Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.

According to Los Alamos researcher Han Htoon, the work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

"This effect has previously only been possible with high magnetic fields generated by bulky superconducting magnets, by coupling quantum emitters to very complex nanoscale photonic structures, or by injecting spin-polarized charge carriers into the quantum emitters." Our proximity effect approach has the advantage of low manufacturing costs and high reliability."

Polarization states are a means of encoding photons, so this result is an important step in the direction of quantum cryptography, or quantum communication. "With a light source that produces a single photon stream and introduces polarization, we basically have two devices in one."

The team stacked a single-molecule thick layer of tungsten diselenide semiconductors on top of a thicker layer of magnetic nickel-phosphorus trisulfide semiconductors. Using an atomic force microscope, the team created a series of nanoscale indentations on a thin layer of material.

When the laser is focused on the pile of material, the 400 nanometer-diameter indentation created by the atom microscope tool has two effects. First, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten diselenide monolayer fall in the depression. This stimulates the emission of a single photon from the trap.

The nanoindentation also destroys the typical magnetic properties of the underlying nickel-phosphorus trisulfide crystals, creating a local magnetic moment pointing outward from the material. This magnetic moment causes the emitted photon to be circularly polarized. To experimentally confirm this mechanism, the team first conducted high-magnetic field spectroscopy experiments in collaboration with the Pulse Field Facility at the Los Alamos National High Magnetic Field Laboratory. The team then worked with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is now exploring ways to modulate the degree of circular polarization of single photons through electronic or microwave stimulation. This ability would provide a way to encode quantum information into a stream of photons. Further coupling of the photon stream to the waveguide will provide the photonic circuit so that the photons propagate in one direction. Such circuits will become a fundamental component of an ultra-secure quantum Internet.

Source: OFweek

Gerelateerde aanbevelingen
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    Bekijk vertaling
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    Bekijk vertaling
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    Bekijk vertaling
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Bekijk vertaling
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Bekijk vertaling