Nederlands

A new type of flexible reflective mirror can improve the performance of X-ray microscopy

875
2024-05-06 16:31:46
Bekijk vertaling

A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.
This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the performance of X-ray microscopy and other technologies that use X-ray mirrors. The relevant results were published in the journal Optica.

A new type of deformable mirror for X-ray microscopy, achieving high image resolution through wavefront correction.


X-ray microscope is an advanced imaging tool that serves as a bridge between electron microscopy and optical microscopy. It uses X-rays that provide better resolution than light and can penetrate thick samples that electrons cannot penetrate. This enables imaging of structures that are difficult to see with other microscopy techniques.

X-ray microscopes have high resolution, making them particularly important in fields such as materials science and biology, as they can observe the composition, chemical state, and structure inside samples.

Reflectors play a crucial role in X-ray microscopy. They can reflect X-ray beams and perform high-resolution imaging on complex structures. High quality images and accurate measurements are essential, especially in cutting-edge scientific fields such as catalyst and battery detection.
However, due to the small wavelength of X-rays, they are easily distorted due to small manufacturing defects and environmental influences. This will generate wavefront aberrations, thereby limiting the resolution of the image. Matsuyama and his collaborators solved this problem by creating a deformable mirror and adjusting its shape based on the detected X-ray wavefront.

The X-ray microscopy images showed higher resolution after using the new deformable mirror. The left and right images are the images before and after shape correction, respectively.

In order to optimize their mirrors, researchers studied piezoelectric materials. These materials are very useful because they can deform or change shape when an electric field is applied. In this way, even if there is a slight deviation in the detected radio waves, the material can reshape its own shape and respond accordingly.

After considering various compounds, researchers chose lithium niobate single crystal as a shape changing mirror. Single crystal lithium niobate is very useful in X-ray technology because it can expand and contract under the action of an electric field, and form a high reflective surface through polishing. This allows it to serve as both an actuator and a reflective surface, simplifying the equipment.

Matsuyama said, "Traditional X-ray deformable mirrors are made by bonding glass substrates and PZT plates. However, connecting different materials together is not ideal and can lead to instability. To overcome this problem, we used single crystal piezoelectric materials, which are made of uniform materials and do not require bonding, thus having extremely high stability. Due to their simple structure, the mirror can freely deform, achieving atomic level accuracy. In addition, this accuracy can be maintained for 7 hours, confirming its extremely high stability.".

When testing their new equipment, Songshan's team found that their X-ray microscope exceeded expectations. Its high resolution makes it particularly suitable for observing microscopic objects, such as semiconductor device components.

Compared to the spatial resolution of traditional X-ray microscopes (usually 100 nanometers), their technology has the potential to develop microscopes with a resolution about 10 times higher (10 nanometers) because aberration correction makes them closer to the ideal resolution.
Matsuyama said, "This achievement will drive the development of high-resolution X-ray microscopes, which have always been limited by manufacturing process accuracy. These mirrors can also be applied to other X-ray equipment, such as lithography equipment, telescopes, CT in medical diagnosis, and X-ray nanobeam formation."

Related links: https://phys.org/news/2024-05-mirror-flexibly-ray-microscopes.html

Source: Physicist Organization Network

Gerelateerde aanbevelingen
  • A major investment! Lumentum completes acquisition of research and development site in Carswell, UK

    Lumentum, a leading designer and manufacturer of innovative optical and photonic products, has announced that it has completed the acquisition of a site in Caswell, UK.Lumentum revealed that it has made significant investments in the site over the past two years and is currently undergoing development upgrades for its state-of-the-art cleanrooms and laboratories to continue to support the developm...

    2023-09-13
    Bekijk vertaling
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Bekijk vertaling
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    Bekijk vertaling
  • The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

    Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full ...

    2024-10-18
    Bekijk vertaling
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    Bekijk vertaling