Nederlands

Ultra thin two-dimensional materials can rotate the polarization of visible light

612
2024-04-27 13:54:18
Bekijk vertaling

For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate in one direction but blocks all light in the other direction.

In a recent study, physicists from Germany and India showed that ultra-thin two-dimensional materials such as tungsten selenide can rotate the polarization of visible light at certain wavelengths by several degrees under a small magnetic field suitable for chip use. Scientists from the University of M ü nster in Germany and IISER in Pune, India, published their research findings in the journal Nature Communications.

One of the problems with traditional optical isolators is their considerable volume, ranging in size from a few millimeters to a few centimeters. Therefore, researchers are still unable to manufacture micro integrated optical systems on chips that can compete with everyday silicon-based electronic technology. Currently, there are only a few hundred components on integrated optical chips.

Faraday effect in two-dimensional semiconductors
By contrast, computer processor chips contain billions of switching elements. Therefore, the research work of the German and Indian teams has taken a step forward in the development of miniature optical isolators. The two-dimensional materials used by the researchers are only a few atomic layers thick, making them 100000 times thinner than human hair.

Professor Rudolf Bratschitsch from the University of Minster said, "In the future, two-dimensional materials may become the core of optical isolators and enable on-chip integration of current and future quantum optical computing and communication technologies."
Professor Ashish Arora from IISER added, "Even the bulky magnets required for optical isolators can be replaced by atomic level thin two-dimensional magnets. This will greatly reduce the size of photonic integrated circuits."

The research team deciphered the mechanism that led to their discovery: bound electron hole pairs, also known as excitons, in two-dimensional semiconductors cause strong polarization rotation of light when ultra-thin materials are placed in a small magnetic field.
Arora said, "Conducting such sensitive experiments on two-dimensional materials is not easy because the sample area is very small. Scientists had to develop a new measurement technique that is about 1000 times faster than previous methods."

Source: Physicist Organization Network

Gerelateerde aanbevelingen
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    Bekijk vertaling
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    Bekijk vertaling
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    Bekijk vertaling
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    Bekijk vertaling
  • The research team at the University of Electronic Science and Technology of China has developed three innovative photonic devices

    Recently, Professor Nie Mingming from the Key Laboratory of Fiber Optic Sensing and Communication at the School of Information and Communication Engineering, University of Electronic Science and Technology of China, in collaboration with the University of Colorado Boulder, published a research paper titled "Cross polarized stimulated Brillouin scattering empowered photonics" in the top internation...

    05-30
    Bekijk vertaling