Nederlands

Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

499
2024-04-11 15:28:09
Bekijk vertaling

Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic transmittance detectors play a crucial role in the plastic processing industry.

The core principle of a laser welding plastic transmittance detector is to use a laser beam to irradiate the test sample and calculate the transmittance by measuring the intensity of the transmitted light. During laser welding, plastic materials are subjected to high temperature and pressure in the welding area, resulting in melting and recrystallization, forming a continuous whole. However, during the welding process, defects such as poor welding, porosity, and cracks may occur, which can have a negative impact on the transparency performance. Therefore, by measuring the transmittance, welding quality can be detected and evaluated in a timely manner, providing a basis for product quality control and improvement.

The laser welding plastic transmittance detector has various advantages. Firstly, it uses laser as the light source, which has the characteristics of single wavelength, high brightness, and good directionality, and can provide stable and reliable measurement results. Secondly, the instrument has fast and accurate measurement capabilities, which can complete a large number of sample measurements in a short time and improve production efficiency. In addition, the instrument also has the characteristics of easy operation and high degree of automation, reducing the difficulty and error of manual operation, and improving the accuracy and reliability of measurement.

In practical applications, laser welded plastic transmittance detectors are widely used in fields such as automobiles, electronics, and healthcare. For example, in automotive manufacturing, plastic welding is widely used in the manufacturing process of components such as car bodies and interiors. By using a laser welding plastic transmittance detector, welding defects can be detected in a timely manner, improving the sealing and appearance quality of the vehicle body. In the electronics industry, plastic products are widely used in packaging, connectors, and other fields. laser
The measurement of welding plastic transmittance detector can ensure welding quality, improve product reliability and stability. In the medical industry, plastic products are widely used in fields such as medical devices and surgical instruments. The measurement of laser welding plastic transmittance detector can ensure the transparency and clarity of medical devices, improve the accuracy and safety of surgical operations.

In addition to the above application areas, laser welded plastic transmittance detectors can also be applied in other fields, such as aerospace, construction, etc. With the continuous progress of technology and the expansion of applications, laser welded plastic transmittance detectors will play an important role in more fields.

In summary, laser welded plastic transmittance detector is an important industrial testing equipment with broad application prospects and market demand. It can not only provide accurate and reliable measurement results, but also improve production efficiency and product quality. With the continuous development of technology and the expansion of the market, laser welding plastic transmittance detectors will be applied and promoted in more fields.

We use Jingyi Optoelectronics to launch this transmittance detector specifically designed to detect the near-infrared transmittance characteristics of plastic materials, which scans the transmittance of injection molded parts in full screen. According to the needs, the detection area can be freely defined and the transmittance range can be set. The transmittance and impurities in the detection area can be automatically extracted and identified, and the impurity position can be automatically marked. This product is suitable for multi-point testing of samples, avoiding missed tests. The testing operation is convenient, and there is no need for positioning fixtures. The testing speed is extremely fast, and the measurement is completed within one second.

Source: Sohu

Gerelateerde aanbevelingen
  • A major investment! Lumentum completes acquisition of research and development site in Carswell, UK

    Lumentum, a leading designer and manufacturer of innovative optical and photonic products, has announced that it has completed the acquisition of a site in Caswell, UK.Lumentum revealed that it has made significant investments in the site over the past two years and is currently undergoing development upgrades for its state-of-the-art cleanrooms and laboratories to continue to support the developm...

    2023-09-13
    Bekijk vertaling
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Bekijk vertaling
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Bekijk vertaling
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Bekijk vertaling
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Bekijk vertaling