Nederlands

An optical display technology based on mechanical optical mechanism

538
2024-03-12 13:52:13
Bekijk vertaling

The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.

Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP that can write and erase messages underwater. This discovery reveals a unique optical phenomenon in ALP, and they have also created a device to achieve this phenomenon.

ALP can absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure and mechanical quenching, where the emitted light gradually disappears.

In this study, scientists delved into the effects of captured electrons and charging on mechanical luminescence and quenching.
They identified the potential mechanisms behind these two events. Based on this knowledge, they paired ALP with an extremely thin polymer material that can simultaneously achieve both phenomena. This combination has led to the development of optical display patches that can be attached to the skin.

Just press with your finger and the display screen patch can write information. When exposed to ultraviolet radiation, the patch will reset to a blank state, just like using an eraser to delete text from a notebook. In addition, touch screen displays also have moisture resistance, allowing them to continue working even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by low light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Gerelateerde aanbevelingen
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Bekijk vertaling
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Bekijk vertaling
  • The influence of post-processing methods on the fatigue performance of materials prepared by selective laser melting

    Researchers from Opole University of Technology in Poland have reported the latest progress in studying the effect of post-processing methods on the fatigue performance of materials prepared by selective laser melting (SLM). The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Influence of post processing methods on fatigue performan...

    01-17
    Bekijk vertaling
  • Historic Moment! The 100th TruLaser Cell Series 3D Five-Axis Laser Cutting Machine Successfully Rolls Off the Production Line in China

    Driven by the global trend of lightweighting in new energy vehicles (NEVs), TRUMPF has reached a significant milestone in Taicang, Jiangsu—the successful rollout of the 100th TruLaser Cell series 3D five-axis laser cutting machine. This achievement is more than just a numerical breakthrough; it symbolizes the deep integration of German technology with Chinese manufacturing and underscores TRUMPF's...

    03-14
    Bekijk vertaling
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Bekijk vertaling