Nederlands

The research team has developed a mechanical luminescent touch screen that can work underwater

250
2024-03-08 14:41:11
Bekijk vertaling

The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.

The team is composed of Professor Sei Kwang Hahn from the Department of Materials Science and Engineering at POSTECH and doctoral student Seong Jong Kim, who discovered a unique optical phenomenon in ALP. Subsequently, they successfully created a device to achieve this phenomenon. Their research results have been published in Advanced Functional Materials.

ALP has the ability to absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure, and undergoing mechanical quenching when the emitted light disappears. Although active research has been conducted on the use of this technology for optical displays, the precise mechanism remains elusive.

In this study, the team delved into the effects of electron capture and charging on mechanical luminescence and quenching. They successfully unraveled the mechanisms that control these two phenomena. Based on this understanding, they will be able to achieve both phenomena simultaneously by combining ALP with very thin polymer materials. This combination leads to the creation of optical display patches that can be attached to the skin.

Display patches can convey information through writing by applying a small amount of pressure to the fingers. When exposed to ultraviolet light, the patch will reset to a blank state, similar to using an eraser to erase the content of a sketchbook. In addition, the touch screen of the display screen has moisture resistance and can maintain its function even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by weak light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Gerelateerde aanbevelingen
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Bekijk vertaling
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Bekijk vertaling
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Bekijk vertaling
  • A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

    According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sourc...

    2023-09-21
    Bekijk vertaling
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Bekijk vertaling